CPSC 421 1501 Nav. 2,2020

- Finish the Cook-Levin theorem:
- if $S A T \in P$, then $N P=P$
- if $3 S A T \in P$, then $N P=P$
- In practice we are mare interested in 3SAT
[We will need some Baden algebra...]
- Formalize NP-completeness and reductions
- Many languages are NP -complete:

3SAT, 3-COLOUR, 4-COLOR, etc.
SUBSET-SUM, PARTITION, etc.
EXPANSION, etc.
VERTEX COVER, etc.
etc.

Breakout Roan Problems
(1) Say that SAT SA. Show that giver a Boolew formula, $f=f\left(x_{1}, \ldots, x_{n}\right)$, one con find $x_{1, \ldots, x_{n}^{*} \in\{T, F\}}$ sit. if $f \in S A T$, then $f\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=T$.
(2) If $L_{1} \leqslant_{p} L_{2}$ by an $O\left(n^{3}\right)$ reduction, and $L_{2} \leq p L_{3} \quad, \quad O\left(n^{5}\right) \quad u$, then $L_{1} \leqslant_{p} L_{3}$. How much time does the reduction require?
(3) Say that 3 COLOUR is NP-camplete. Show that 4 colour "
Is 2 colour Ap-camplete?
(4) Show that for fixed $x_{1, \ldots,} x_{6}$,

$$
X_{1} \text { on } X_{2} \text { or } X_{3} \text { on } X_{4} \text { on } X_{5} \text { or } X_{6}=T
$$

if (for those values of $\left.x_{1}, \ldots, x_{6}\right)$ the formula

$$
\begin{aligned}
& \left(x_{1} \text { or } x_{2} \text { ar } y_{1}\right) \text { AND } \\
& \left(7 y_{1} \text { or } x_{3} \text { ar } y_{2}\right) \text { AND } \\
& \left(7 y_{2} \text { or } x_{4} \text { ar } y_{3}\right) \text { AND } \\
& \left(7 y_{3} \text { on } x_{5} \text { ar } x_{6}\right)
\end{aligned}
$$

is satisfiable.
(5) Say that $L E N P$ and we con prove that $L \in P \Rightarrow N P=P$ Does this meas L is necessarily NP -complete?
(6) Any Boolean $f=f\left(x_{1}, \ldots x_{n}\right)$ can be written as
(clause ${ }_{1}$) or (clause 2) or.... or $\left(\right.$ clause $_{2}$) where
clause $_{i}=$ literal $_{i, 1}$ AND literal $_{i, 2}$ AND ... AND literal ${ }_{i, n}$ where each $l_{\text {literal }}^{i, j}$ is one of

$$
x_{1}, x_{2}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}
$$

(and \neg is negation),
i.e. as a DNF of size 2^{n} (ar less)
and width n (or less).
(7) Any Boolean $f=f\left(x_{1}, \ldots, x_{n}\right)$ can be written in CNF of size 2^{h} and width n.
"The only constant that a theoretician care about is the ore in their salary"

- Richard Kara
[Well see this today...]

Idea: We have a nor-determin-stic Turing machine/algorithm M, we hour an input to M, w, given $\langle m, w\rangle$
(assuming $Q=\{1, \ldots,|Q|\}$,

$$
\Gamma=\{1, \ldots,|\Gamma|\}, \text { in } Q \quad \begin{aligned}
1 & =\text { initial suit } \\
2 & =\text { accept state } \\
3 & =\text { rejed in }
\end{aligned}
$$

Cenvert $\langle M, w\rangle$ "'reduction" Bolew \quad) Booler formula m,w
s.i.
(1) M accepts $+\infty$ iff $f_{m, w} \in S \sqrt{1}$
there $\left\{(\xi) f_{m, w}\right.$ has size polyin $|w|$ huge
constents (3) We can produce $f_{m, w}$ with OU(pody(n)) a poly time algarittm whoch (4) then, if SAT EP \Rightarrow (u. Mamber)

$$
\text { Langunge }(M) \in P
$$

This proef really gives a reduction"

State time 0
Idea:

t step (time 0
\leftarrow stepltive 1
\leftarrow 'stepltive N

$$
\text { cell 1 cell 2 ... cell } \underline{N+1}
$$

$N=p d y(n)$

$$
x_{i j k}= \begin{cases}T & \text { if at time } i, \text { cell } j, \text { the symbol } \\ F & k \text { is written } \\ F \text { otherwise }\end{cases}
$$

$Y_{i j}=\left\{\begin{array}{l}T \text { if at time } i, \text { tope head is at } \\ F \text { otherwise }\end{array}\right.$
$t_{\text {is }}= \begin{cases}T & \text { af time } i, \\ F & \text { as e are in state } s \\ F & \text { otherwise }\end{cases}$
We wive for all i, j, exact one T amoung (1) $x_{i, j, 1}, x_{i, j, 2}, \ldots, x_{i, j,|\Gamma|}$
$A N D$
(2) smilurly for $Y_{i j}, Z_{i s}$

(ie. after N steps we acre ir the accept ARND State)
(4) We want $\omega_{1} \ldots \omega_{n}$ ULU to be written initially, and initially?
tare heed ir cell 1, state = indic state
AND
(5) The transition from step i to step it is a valid computation in $M\left(f_{c s} i=0,1,2, \ldots, N-1\right)$

Remark: Ultimately, we want have formula $f_{m, w}$ to be in $3 C N f$ form: if.
$f_{m, w}=c^{c l a u s e}$, AND clause 2 ANus.... AND clause $M, \quad\left(\begin{array}{ll}M & \text { poly } \\ \text { in }|w|\end{array}\right)$
where

$$
\text { clause }_{r}=\text { literal }_{i, 1} \text { ce literal } \text { ar literal }_{i, 3}
$$

where \mid literal $=x_{1}, \ldots, x_{n}, \neg x_{1}, \neg x_{2}, \ldots, \neg x_{n}$

$$
\begin{aligned}
& A N D=A \quad O_{R}=V, \quad N E G A T I O N=7 \\
& \text { (} \mathrm{NCT} \text {) }
\end{aligned}
$$

(3) $Z_{N, 2}=T_{N}$ is same as

$$
\left(z_{N, 2} \text { or } z_{N, 2} \text { or } z_{N, 2}\right)
$$

(2) Put! for all i,

$$
z_{i, 1}, z_{i, 2}, z_{i, 3}, \ldots z_{i,|Q|}
$$

exactly one is true.

$$
\frac{-z_{i, 1} \text { or } z_{i, 2} \text { or } z_{i, 3} o_{r} \ldots \text { or } z_{i,|Q|}}{(i \text { is true) need trick } \rightarrow 3 \text { CNF }}
$$

AND

$$
=\left(\neg z_{i, 1} \text { or } \neg z_{i, 2} \text { or } \neg z_{i, 2}\right)
$$

AND

$$
\begin{aligned}
& \left(\neg z_{i, 1} \text { or } \neg z_{i, 3} \text { or } \neg z_{i, 3}\right) \\
& \text { ide. } \overbrace{\left.\begin{array}{l}
A N D \\
j,<j z
\end{array}\right)}^{\left(\neg Z_{i, j 1} \text { or }-7 Z_{i, j z} \text { on } \neg Z_{i, j z}\right)}
\end{aligned}
$$

Trick: Think of $z_{i, 1}, \ldots, z_{i,|Q|}$ as fixed; then

$$
z_{i, 1} \text { on } z_{i, 2} \text { or } \ldots z_{i, k i}=\bar{T}
$$

Iff this is satifsicble (ad) $u_{i, i}$):

$$
\left(z_{i, 1} \text { or } z_{i, 2} \text { or } u_{i, 1}\right)
$$

AND

$$
\left(\neg u_{i, 1} \text { or } z_{i, 2} \text { or } u_{i, 2}\right) \text { variables }
$$

AND

$$
\left.\begin{array}{l}
\left(\neg u_{i, 2} \text { on } z_{i, 3}\right. \text { on } \\
u_{i, 3}
\end{array}\right)
$$

Brakat rams for problems

$$
\begin{aligned}
& (4) \& 6 \\
& 10: 23-10: 31
\end{aligned}
$$

(6) is DNF, not CNF
(4) X_{1} on X_{2} or X_{3} or X_{4} or X_{5} or $X_{6}=T$
if (for those values of $\left.X_{1}, \ldots, x_{6}\right)$ the formula

$$
\begin{aligned}
& \left(x_{1} \text { or } x_{2} \text { ar } y_{1}\right) \text { AND } \\
& \left(\neg y_{1} \text { ar } x_{3} \text { ar } y_{2}\right) \text { AND } \\
& \left(\neg y_{2} \text { on } x_{4} \text { ar } y_{3}\right) \text { AND } \\
& \left(\neg y_{3} \text { on } x_{5} \text { ar } x_{6}\right)
\end{aligned}
$$

is satisfiable.

so black cm be satisfied, at least one of x_{1}, \ldots, x_{n} frost be T

Bot if, say, $x_{3}=T$ then

(5) step $i \rightarrow$ step its is valid transition in m
time i $a^{\text {cell j }}[$ if tape head isn't at cell j, time i)
time it 11 then contras cell j, time it 1
cell j
time i
if tape head at time i is on cell j,
then
if state
then exclusively ene of Cell j, time it: write poss, next stacte pess-sticte. tupe head posititin poos_tye, OR
write poss 2 next state poss-stete, 2 tape head poss-tape 2
if state 2
$\binom{$ huge }{ constutil }
,

