CPSC 421/50) Nav 3:

- Midterm on Nav 5:
- 1 hour long +5 min to upload to gradescope
- Open Book:
- You can use textbook, handouts,
- You can use any amount of notes
- You cannot use any other sources, either online or not
- Start time 9:30 am
- Yow will need to leave your Zoom camera on and mute yourself.
- Bring your UBC ID to the midterm
- Contact me (jf@csiubcica) if
(1) you haven't received Canvas test message of $8: 21 \mathrm{am}$, Tuesday, Nov 3,

OR
(2) You are in time zone that requires you to begin between 9 pm and 6 am and you'd like the alternate midterm at $8: 30 \mathrm{pm}$ Pacific (Daylight Savings) Time. We are almost done with 421 :

- new matoral! Nov 10, 12

$$
17,19
$$

port of 24,26
501 presertions: dorms
Nov 24, 26
Dee 1, 3

- All midterm question will require you to show some work

Additional Midterm Practice:
(1) (a) If L_{1}, L_{2} are regular, is $L_{1} \cup L_{2}$ regular?
(b) "1. 1. non-reguler, is $L_{1} \cap L_{2}$ nanregules?
(b) No - you have to give an example where L_{1}, L_{2} non-reguler, bit $L_{1} \cap L_{2}$ is regular?

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{n}\right\} \quad(\text { or any nonreguler), } \\
& L_{2}=L_{1}^{\text {cars }}=\{0,1\}^{*} \backslash\left\{0^{n} 1^{n}\right\}, \text { then } \\
& L_{1} \cap L_{2}=\phi \text { reguls. }
\end{aligned}
$$

(a) We know L_{1}, L_{2} regular $\Rightarrow L_{1}, L_{2}$ regular
eng. if L_{1} recegniod by m_{1} L_{2} " " m_{2}

short explanation of why reg lang closed
(2) $\&(3)$

$$
L=\left\{S \in\{a, b)^{*} \mid \text { end with } a b a\right\}
$$

(2) Give DFA, explam haw it works
(3) "Turing machine deciding L, explain how it warts.
[Fer Midterm 2019: specify Q ant f either by list of values, or state diagram. What is work tope $\cap ?$ Clearly indicate initial state, accept stake, reject state.]

Idea: To end with aba you must (1) see an a somewhere
(2) then a immetritely proceeded by $a b$ (otherwise back to having seen an a) etc.
Or: Explain the same, state by slate Go means - , qu means_

OR: it suffices to remember last 3 symbds

Turing machine: "equivalent"

Another algorithm:

- proceed to L
- then move 3 to the left
special case

| $a\|b\| v \mid$ |
| :--- | :--- | :--- | :--- |

Gie some explarection

Tm con regegnize $-\left\{0^{n} 1^{n}\right\}$

$$
\begin{aligned}
& \text { - palindrome } \\
& -\left\{a, a^{4}, a^{a}, a^{6}, \ldots\right\}
\end{aligned}
$$

There is a countable number of TM algarithons
"'an uncountable " " languages (over any frize efphlet)
(4) $L=\left\{a^{4}\right\}$. Use m, hill-Nerote to show that any DFA recognise L has ≥ 6 states

Idea: Acc fut (ω)
for various w.
Also: since $\Sigma=\{a\}$, try

$$
w=\varepsilon, a, a^{2}, \ldots
$$

$$
\left.\begin{array}{rl}
\operatorname{Accfut}_{L}(\varepsilon) & =\left\{a^{4}\right\} \\
(a) & =\left\{a^{3}\right\} \\
\left(a^{2}\right) & =\left\{a^{2}\right\} \\
\left(a^{3}\right) & =\{a\} \\
\left(a^{4}\right) & =\{\varepsilon\} \\
\left(a^{5}\right) & =\varnothing \\
\text { 1 element sets } \\
\text { will different } \\
\text { elements, } \\
\text { end }
\end{array}\right\} 0 \text { element set }
$$

Reni) $\Sigma=(G, b)$, then δ still hold,
and

$$
\text { Acc fut } L\binom{\text { anythry witt }}{\geqslant 1}=\varnothing
$$

Recall: for $L=\left\{0^{n} 1^{n}\right\}$
$\operatorname{Acctu}\left(0^{k}\right)=\left\{1^{k}, O 1^{k+1}, \cdots\right\}$
We say, eg. shortest elm't ir $\mathbb{N i s}_{\text {is }} 1^{k}$

Which are distinct for all $1<\in \mathbb{N}$

Five min break $10: 25+10: 30$

Mare questions:

$$
\begin{aligned}
& \text { TIMES }=\left\{\begin{array}{l}
\left.a \notin b^{*} c \left\lvert\, \begin{array}{l}
a, b, c \in\{c, 1\}^{k} \\
a n d \\
a \cdot b=c^{\prime \prime}
\end{array}\right.\right\}
\end{array}\right. \\
& \text { PERE,SQ, BINARY } \\
& :\left\{a \in\{c, 1\}^{*} \left\lvert\, \begin{array}{l}
a \text { in binary } \\
\text { rep reefed or }
\end{array}\right.\right\}
\end{aligned}
$$

$p_{\text {cob }}^{\text {ardor }}\left\{\begin{array}{l}\text { (1) for } n=1 \text { to } a \\ \text { (2) see if } n \cdot n=a\end{array}\right.$
Implement on TM: \rightarrow input tape (stree)
 counter n

$$
\frac{1}{Q_{\text {increment ip to }} 101101} \text { tape } 2
$$

Le) to
multiph
$n \cdot n$ $\begin{cases}\square & \text { tues } 3 \\ \cdots & \cdots\end{cases}$ $n \cdot n$

Therds a map $[2]^{N} \rightarrow \mathbb{1 1}$

$$
1011111
$$

0.1011111
the map is not bijection
Exams! "explain" "show that" "justify your answer" \longrightarrow "give a formal proof"

$$
\begin{aligned}
& \{\text { languages over }\{a, b\}\} \\
& =\text { Power }\left(\{a, b\}^{*}\right)
\end{aligned}
$$

We know, from Cantor's theorem:
if S is countably infinite, then
then there is Surjection

$$
\begin{aligned}
& \int \longrightarrow \text { Power }(S)
\end{aligned}
$$

Midterm does not cover Chi
but
$\{$ standardized DEA's \}

$$
\begin{aligned}
& \left(\begin{array}{lll}
\{ & \cdots & \operatorname{grapho}\}
\end{array}\right) \\
& \left\{\begin{array}{ll}
& \cdots
\end{array}\right\}
\end{aligned}
$$

are clii cantabile

$$
\text { but if } \sum \text { clphbat }
$$

$\{$ languages over $\}$ is uncountable
the empty language $=\varnothing$

$$
\neq\{\varepsilon\}
$$

CLASS ENDS

$$
\operatorname{siza} f(\phi)=0
$$

WFA recgnites $(0,1)^{k} \mid(0,1)^{2}$

$$
\begin{aligned}
& \rightarrow\left(a_{0}^{a_{0}}\right) \\
& \delta\left(q_{3}, 0\right)=\varnothing \\
& \delta\left(q_{3}, 1\right)=\phi
\end{aligned}
$$

