CPSC $421 / 501$
Last 2 weeks of class:
$\left.\begin{array}{lll}\text { Nov } & 24 & 26 \\ \text { Dee } & 1 & 3\end{array}\right\} \begin{aligned} & \text { Weill have presentations } \\ & \text { for } \operatorname{Crsc} 501\end{aligned}$
(1) Topics suggested on new webpaije very short
(2) Presentation: 10-15 minutes, material \& questions
(3) Topics: - Some topics in [Sir] or suggested there.
(4) 10-15 very short! Yowill probably arty have time
to (1) Summarize (2) present one or two technical
need (3) bibliography \& read, to now questions
(5) groups all up to 4 people
(6) Let me know: the topics) you want, preferences for presentation days $24,26,1,3$
(7) Many other tapies possible - should be related to present CPSC 421/501 course, or fundamental part of $C S$ theory
email me for topics not on webpage
(8) Make sure presuntetien is understandable to CPSC $42 /$ sol

Students: carefully explain any new terminology, new motivation
(9) Try at your presentation on someone else beforehand, for timing, underability, and technological problems.
(10) Send me slides, etc. after the presentation, within 2 days

Midterm on Nov S:
(1) Probably (-hour exam
(2) Open book exam
(3) Probably we will ask yon to leave Zoom cameras on during midterm
(4) Cover up to end Chapter 3 (i.e. what we finished (st part of (ass on Thursday)
(5) Midterms start 9:30 ane: make sure that your Canvas time zone is set appropriately,
(6) Fornuct. midterm will be usual format! some Tlf, some shat ansure, same long answers.

Ucu'll have to submit PDF to grade scope.
Cell phone OK to take pic + upload
Ch 3! deciding us recognizing
langurge recognised by $I M, M$, is

$$
\{w \mid M(w)=\text { accept }\}=\{\omega \mid M \text { accepts } \omega\}
$$

This week I'll give a chance to test you uploading - system (ptybaty via gradescipe)

Ch: Accept Tm_{m} i.e. F_{Tm} is undecióable NOT ON EXAM.
Ch 3 includes \langle graph $\rangle,\langle T . m\rangle, \ldots$

Midterm
Nav 3
Tu pend 40 $\quad \operatorname{Nav}^{\text {Tu }}$
minutes
reviler ansures to questions you may have of midterm material

Back to Ch 4!

- Last time!

$$
A_{\text {crept }}^{\text {Tm }}=A_{\text {Tm }}=\{\langle m, \omega\rangle \mid m \text { accepts } \omega\}
$$

is (1) undecidable \leftarrow (proof by contradiction,
(2) recognizable by clarity related to pat-reradueses.) a universal Turing machine U
[Sop]: U, or input $\langle M, w\rangle$, "simulates" what m would do an input w.

give algorithm, can use any finite number of tapes
Now! (1) We'll show that other languages are undecidable
(2) Well show that some languages are not recognizable

Idea (2): If L is undecidable but recognizable, then L comp $=\sum^{-k} \backslash L$

$$
=\left\{\omega \in \Sigma^{*} \mid \omega \notin L\right\}
$$

is unrecognizable.
If so, $A_{\text {Tm }}^{\text {comp }}$ in unrecognizable

If L is recognizable $\} \Rightarrow L$ is decidable and $L^{\text {comp }}$ is recognizable

Recognrable $=$ there is a T.M. M s... $\{=\{w \mid M$ accepts $\omega\}\}$
Decidable $=\ldots \ldots, \ldots, \ldots$
and $i n$ always halts
L is recognizable by M,

$$
L^{\text {cons....... }} M_{2}
$$

If $w \in L$, run M, on w eventually reach qace " $\omega \in L^{\text {comp }}, \ldots M_{2} \ldots \ldots \ldots q_{\text {acc }}$

Now sun M_{1} and m_{2} simulcteausly in input w, then after finite time ($=$ *of steps) we halt and knew if $\omega \in L$ or $\omega \notin L$

$$
\omega \in L^{\operatorname{comp}}
$$

If M is Turing M, $M(w)=$ run M on w

$$
M(w)=\left\{\begin{array}{lc}
\text { accept } \Leftarrow & \text { holt after some } \\
\text { reject } & \text { doesht halt }
\end{array}\right.
$$

M_{1} that halts 4 accepts if $w \in L$ $M_{2} \cdots \cdots \cdots$ if $\omega \notin L$, ie. $\omega \in L \operatorname{com} p$
$\begin{aligned} \omega & \rightarrow \text { run cress step of } m_{2}\end{aligned} \rightarrow$ run 2^{-d} step of $m_{2} \mid$ at some finite steps of steps, either M_{1} or M_{2} halt.

Now S-min brock $10: 37 \rightarrow 10: 42$
Cold (ATm) comp be recognizable?
NG, since otherwise \rightarrow by unnorsd Tm

$\Rightarrow A_{\text {Tm }}$ is decidable contradiction

Simikert L is recognizalk bot not decidable
$\Rightarrow \quad L^{\text {comp }}$ is not recognizable.

Similarly HAT Tm is undecidable
(1) mimmick the press that that $A_{T m}$ is deciridub)
$\left.\begin{array}{l}\text { (2) OR if } / H A L T_{\text {Tm }} \text { is decidable } \\ \left(\Leftrightarrow A_{\text {Tm }} " l l\right.\end{array}\right]$ then HALT Tm $^{\text {undecidable }}$

If you could decide WALT $_{\text {Tm }}$ and given $\langle M, w\rangle$ and you wort to know if $M(w)=\operatorname{accepts}$
then

$$
M(\omega)=\left\{\begin{array}{l}
\text { accepts } \\
\text { rejects } \\
\text { duesn't halt }
\end{array}\right.
$$

create \widehat{M}

$$
\widehat{m}(w)=\left\{\begin{array}{cc}
\text { accepts } & \text { whir } \\
m(w)=\text { accepts } \\
\text { doesn't halt } & m(w) \text { rejects } \\
\text { in } & m(w)=\text { does nit halt }
\end{array}\right.
$$

then
$m(\omega)$ accepts $\Rightarrow \widetilde{M}(\omega)$ halts \therefore doesn't accepts $\Rightarrow \hat{m}(\omega)$ doesn't halt

If $H A L T_{\text {Tm }}$ is decidable, run $H A L T_{\text {Tm }}$ alg

$$
o n(\hat{m}, \omega\rangle
$$

