CPSC 421/501

Last 2 weeks of class:

Nov 24, 26, Dec 1, 3 (we'll have presentations for CPSC 501 students)

1. Topics suggested on new webpage
 (very short)

2. Presentation: 10-15 minutes, material & questions

3. Topics: Some topics in [Sir] or suggested there.

4. 10-15 very short: You'll probably only have time to:
 1. summarize
 2. present one or two technical
 3. bibliography
 4. ready to answer questions

5. Groups OK up to 4 people

6. Let me know: the topics you want,
 preferences for presentation days 24, 26, 1, 3

7. Many other topics possible — should be related to
 present CPSC 421/501 course, or fundamental
 part of CS theory

8. Email me for topics not on webpage

9. Make sure presentation is understandable to CPSC 421/501

Students: carefully explain any new terminology, new motivation

① Try out your presentation on someone else beforehand, for timing, understandability, and technological problems.

② Send me slides, etc. after the presentation, within 2 days

Midterm on Nov 5:

① Probably 1-hour exam

② Open book exam

③ Probably we will ask you to leave Zoom cameras on during midterm

④ Cover up to end Chapter 3 (i.e., what we finished 1st part of class on Thursday)

⑤ Midterm start 9:30 am; make sure that your Canvas time zone is set appropriately

⑥ Format: midterm will be usual format! Some T/L, some short answers, some long answers.
You'll have to submit PDF to gradescope.

Cell phone OK to take pic + upload

Ch 3: deciding vs recognizing

language recognized by TM, M, is

\[\{ w | M(w) = \text{accept} \} = \{ w | M \text{ accepts } w \} \]

This week I'll give a chance to test you uploading system (via gradescope)

Ch 4: Accept \(\text{TM} \) i.e. \(A_{\text{TM}} \) is undecidable

NOT ON EXAM.

Ch 3 includes \(\langle \text{graph} \rangle \), \(\langle \text{T.M} \rangle \), ...

Midterm Nov 3 Nov 5

Tu Th

Spend 40 minutes

Review answers to questions you may have on midterm material
Back to Ch 4!

Last time:

\[\text{Accept}_{TM} = A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts } w \} \]

is 1) undecidable \(\leftarrow\) (proof by contradiction,
with negation + "almost self-reference",
\(\text{ closely related to paradoxes.}\))

2) recognizable by

a universal Turing machine \(U \)

[5.1.7]: \(U \), or input \(\langle M, w \rangle \), "simulates" what

\(M \) would do on input \(w \).

give algorithm, can use any finite number of tapes

Now! 1) We'll show that other languages

are undecidable

2) We'll show that some languages are

not recognizable
Idea 2: If \(L \) is undecidable but recognizable, then \(L_{\text{comp}} = \Sigma^* \setminus L \) is unrecognizable.

If so, then \(A_{M} \) is unrecognizable.

If \(L \) is recognizable and \(L_{\text{comp}} \) is recognizable, then \(L \) is decidable.

Recognizable = there is a T.M., \(M \) s.t. \(L = \{ w \mid M \text{ accepts } w \} \)

Decidable = \(\ldots \ldots \) and \(M \) always halts

\(L \) is recognizable by \(M_1 \)

\(L_{\text{comp}} \) is recognizable by \(M_2 \)
If \(w \in L \), run \(M \), on \(w \) eventually reach \(q_{acc} \)

\[w \in L \implies M \rightarrow^{*} q_{acc} \]

Now run \(M_1 \) and \(M_2 \) simultaneously on input \(w \), then after finite time (\(= \# \) of steps) we halt and know if \(w \in L \) or \(w \notin L \)

If \(M \) is Turing \(M \), \(M(w) = \) run \(M \) on \(w \)

\[M(w) = \begin{cases}
 \text{accept} & \text{halt after some finite \# steps} \\
 \text{reject} & \text{doesn't halt}
\end{cases} \]

\(M_1 \) that halts + accepts if \(w \in L \)

\(M_2 \ldots \ldots \) if \(w \notin L \), i.e. \(w \notin L \) \(\implies \) \(w \notin L \) \(\implies \)

\[\begin{array}{c}
 \text{run one step of } M_2 \\
 \text{run 2nd step of } M_2 \\
 \text{run one step of } M_1 \\
 \text{run 2nd step of } M_1 \\
\end{array} \]

at some finite \# of steps, either \(M_1 \) or \(M_2 \) halt.
Now 5 min break 10:37 → 10:42

Could \((A_{\text{TM}})^{\text{comp}}\) be recognizable?

No, since otherwise

\[
\{ A_{\text{TM}} \text{ is recognizable} \} \rightarrow A_{\text{TM}} \text{ is decidable}
\]

by unversal TM

contradiction

Similarly, \(L\) is recognizable but not decidable

\(\therefore L^{\text{comp}}\) is not recognizable.

Similarly \(\text{HALT}_{\text{TM}}\) is undecidable

\(\therefore\) mimnack the proof that that \(A_{\text{TM}}\) is decidable

\(\therefore\) OR if \(\text{HALT}_{\text{TM}}\) is decidable then \(\text{HALT}_{\text{TM}}\) undecidable
If you could decide HALT_{TM} and given $\langle M, w \rangle$ and you want to know if $M(w) = \text{accepts}$, then

\[
M(w) = \begin{cases}
\text{accepts} & \text{if } M(w) = \text{accepts} \\
\text{rejects} & \text{if } M(w) = \text{rejects} \\
\text{doesn't halt} & \text{if } M(w) \text{ doesn't halt}
\end{cases}
\]

Create \hat{M}

\[
\hat{M}(w) = \begin{cases}
\text{accepts when } M(w) = \text{accepts} & \text{if } M(w) = \text{accepts} \\
\text{doesn't halt } M(w) = \text{rejects} & \text{if } M(w) = \text{rejects} \\
\text{doesn't halt} & \text{if } M(w) \text{ doesn't halt}
\end{cases}
\]

then

\[
M(w) \text{ accepts } \implies \hat{M}(w) \text{ halts}
\]

\[
\text{ doesn't accepts } \implies \hat{M}(w) \text{ doesn't halt}
\]

If HALT_{TM} is decidable, run $\text{HALT}_{\text{TM}} \text{ alg}$ on $\langle \hat{M}, w \rangle$.

\[
\]

\[
\]

\[
\]
Class steps

=

Reely 3.11 (Sip)

Any algorithm that works

convert to a TM algorithm

1-tape, could be 2-tape