$\operatorname{casc} 421 / 501, \operatorname{Oct} 20,2020$
§ 3.2 - Multitape us. Singh Tape

Skip
$\left[\begin{array}{c}- \text { Nondeterministic } \\ \delta: Q \times \Gamma \rightarrow \operatorname{Power}(Q \times \Gamma \times\{L, R\})\end{array}\right]$

$$
\$_{3.3} \text { - Descriptions of }\left\{\begin{array}{l}
-G \text { Graphs } \\
- \text { Bodem formulas } \\
\text {-etc. }
\end{array}\right.
$$

Chapter 4: Goal: Find problems that are undecidable \{4.1: Decidable Problems and unrecognizable
versus Recognizable Problems (examples)
§4.2: Undecidable Problems

- Universal Turing Machines can recognize

$$
A_{T m}, H A L T_{T m}
$$

- But $A_{\text {Tm }}$, HALT $_{\text {Tm }}$ are undecidable.

For now weill skip of non-determinism, bot the idea is like NFA

DEA

NEv:

end
in $\$ 3.2$

Yon could similuate
deterministically "breadth first seactch"
Nondeterministic in

Last time: Multitape machines.

$\delta: Q \times \Gamma^{3} \rightarrow Q \times \Gamma^{3} \times\{L, R, S\}^{3}$ stay
e.g. Recognize $\left\{0^{n} 1^{n} \mid n=1,2, \ldots\right\}$
takes roughli, quadretic time on l-tupe
II lihear time on 2-tupe machive
$\xrightarrow{\longrightarrow}$ "High-level TM description abit - Implemantetion-or Mid-level
ofter (\because - Describe δ entwel
Ren!

first step

Rem: $\Gamma=$ symbols written to each tope cell is an alphabet, so a flite set

$$
\begin{array}{r}
\Gamma=\sum u\{\sqcup\} \cup\left\{\beta_{1}, 2,2,15\right\} \\
\Gamma \Gamma \Gamma
\end{array}
$$

ens. Times $=\left\{\begin{array}{l|l}a+b b * c \mid l \\ a, b, c \in\{c, 1\}^{*} \\ \text { sit }\end{array}\right\}$

$$
\text { binary }(a) \times \operatorname{binary}(b)
$$

convenient to have $=\operatorname{binary}(c)$ a number of tapes

Theorem! If there is a multstape
TM recognizes L, then there is a 1-tupe machine that recognizes L.

Ans! Yes (if you dar't mind takry more time),
Idea!
simulate this
 on a) 1 triage machine
(1) put tape 2 ct the everithy put tape 2 ct the change te tape 2
end of tape Wine \downarrow read this the is a L
extra sunbeds type 1 or cells to tellyau where tire heads we

telling yeh (1) whet is V_{1} on tapel at that position

(3) what is $V_{2} \ldots$ tupe 2?

Turns out: any 2-tape machme algoriyhm that tikes time $=\operatorname{time}(w) \quad w$ rinput,
yok may need $(\operatorname{time}(\omega))^{2}$ or $<1-t$ tipe but: 3-tape alg, still $(\operatorname{time}(\omega))^{2}$ an a -taje

Reel issue
 \# steps then
need to "run

furthest ∇ cen move is so far
then the whole tape contents"
$=$
time a IM takes on ingot $w \stackrel{\text { def }}{=}$ \#steps until acc or rej

Space a TM takes or input in $\frac{\text { def }}{=}$ farthest cell position (to the right) that a telpe head reaches
cell ।
after 10 steps

$$
\text { space : time }+1
$$

 all 1,
y

super t/ape cell
1-tape: cell I tells yon what is geeing on at cell I of topes 1,2,3
if Γ rumble an nulititpe
Super cell $\rightarrow \underset{\substack{\text { Super big } \\ 1-t a x}}{\text { Sal }}$

$$
=\Gamma \times \Gamma \times \int_{x}
$$

 yes, yes, ...)
[Brat 5 mm : $10: 24-10: 29]$

Finish Ch 3:
\{3.3: Only, talk abut "descriptions"
Secy you have an algorithm to see

- if a graph is connretrd
- ". .. ". 3- colourable
- ".. ". ." has a clique of size 5

Technically graph $G=(V, E)$, here V is a finite set, $E c$ unorotsel pairs of \dot{V} erg.

$$
\begin{aligned}
& V=\{a, b, c, \Theta\} \\
& E=\{\{a, b\},\{a, \Theta\},\{(E, c\}\}
\end{aligned}
$$

$\begin{aligned} \text { (directed graph : } E \subset V \times V & =\left\{\begin{array}{l}\text { crowed } \\ \text { paris } \\ \text { of cements } \\ \text { of } V\end{array}\right\}\end{aligned}$ Question: $\{$ all graphs a countable? Techrieclly! V call be a finite Set of \mathbb{R}, or of some uncatable set

But, up to renaming' the vertex set
ϑ

Techrà̀<all!!

$$
\left\{\begin{array}{l}
-\{\text { set of graphs }\} \text { uncountable } \\
-\left\{\begin{array}{l}
\text { set of graphs sit, } \\
V=\{1, \ldots, n\} \text { for } \\
\text { scme } n
\end{array}\right\},
\end{array}\right.
$$ Standerd gragh" is countille

Wher ych tell a comproter about a grapd

Yoh con sey

$$
\left\{\begin{aligned}
20 \text { vertices ; edogs: } & \{1,2\}, \\
& \{5,8\}, \ldots\{3,12\}
\end{aligned}\right\}
$$

as a string

$$
\begin{aligned}
& \text { 2e\# } \underbrace{1 * 2}_{\text {oreedge }} \# \underbrace{5 \# 8 \ldots \text { \& }}_{\substack{\text { anothr } \\
\text { edja }}}+\underbrace{3 \# 12} \\
& \in\{0,1, \ldots, 9, \#\}^{*}
\end{aligned}
$$

Sc we speale of

Stimicoly: Boolen formuk:

$$
\begin{aligned}
f & =\left(x_{1} \wedge x_{2}\right) \vee \neg x_{35} \\
\langle f\rangle & =(x \mid \wedge \times 2) \vee \neg
\end{aligned}
$$

"standurdzed $\times 35$
Bodear fermule"

$$
\in\{(,), x, \wedge, v, 0, \ldots, 9\}
$$

(1) TS the set of TM countrble
(2) Can ych "Standasdize TM" to make them cantable?

