$\operatorname{CPSC} 421 / 501$, Oct 8,2020

- Myhill-Nerode

Update to Zoom 5.3.0 or later to choose your own breakout rooms
$-\left\{0^{n} 1^{n}\right\}$ is nonregular

- Implication:

$$
\left\{\left.O^{n}\right|^{m} O^{p} \mid n+p=m\right\} \text { is non-regular }
$$

(intersed with regular language $\left.O^{*}\right|^{k}$)

- Myhill-Nerde
- Mir DFA far $L=a^{23} a^{*}$

$$
\text { "." " } L=a^{23} a^{*} \cup\left\{a^{0}, a^{1}, a^{5}\right\}
$$

(Don't forget to carefully argue that sets are distinct: e.g. $\{$ odd perfect numbers $\}$ vs, \varnothing $\{0,1\}^{*}$ vs. $\quad(\varepsilon \cup 1)(1,0)^{*}(\varepsilon \cup 0)$

Breakout Room Problems:
(1) Show that $L=\left\{O^{n^{2}} \mid n \in \mathbb{Z}\right\}$ is nonregular $=\left\{0^{1}, 0^{4}, 0^{a}, 0^{16}, \ldots\right\}$
(2) Show that $L=\left\{O^{n} 1^{m} \left\lvert\, \begin{array}{l}n, m \in \mathbb{D} \\ n \geq 2 m\end{array}\right.\right\}$ is non-regular
(3) Show that

$$
L=\left\{\begin{array}{l|l}
L \omega \in\{a, b\}^{*} & \begin{array}{l}
w \text { has the same } \\
\text { number of a's } \\
\text { as b's }
\end{array}
\end{array}\right\}
$$

is non-regulas
(4) If $\omega=\sigma_{1} \ldots \sigma_{k}$, then $\omega^{\text {reverse }}=\sigma_{k} \ldots \sigma_{\text {, }}$ egg. $(a b b)^{r e v}=b b a$

Show that
PALINDROME $=\left\{\omega \in\{a, b\}^{*} \mid \omega=\omega^{\text {rev }}\right\}$
is non-regular.
(5) Give a DEA with the few possible states accepting $(a a b, a b)^{*}$:
(Sa) Give the $D F A$
(Sb) Use My, hill-Nerode to prove that your DEA has the fewest possible states.

Today finish Myhill-Nerade and §1.4 [Sop] on nomregular languages (we are skipping the "pumping lemma"].

Talcum: The language $\left\{\left.0^{n}\right|^{n} \mid n \in \mathbb{N}\right\}$, i.e. $\left\{01,0011,0^{3} 1^{3}, 0^{4} 1^{4}, \ldots\right\}$ is nonreguler, i.e. is not recognized by any DEA,
$\left\{\begin{array}{l}\text { Intuition! When you see GG_O as input } \\ \text { you have to "count" how many O's you seen }\end{array}\right.$
Proct: Accfut, $(u)=\left\{v \in \sum^{k} \mid u v \in L\right\}$
(1)

$$
\begin{aligned}
\operatorname{Accfut}_{L}(\varepsilon) & =L=\left\{01,0^{2} l^{2},\left.0^{3}\right|^{3}, \ldots\right\} \\
\operatorname{Accfut}_{L}(0) & =\{v \mid 0 v \in L\} \\
& =\left\{1,011,0^{2} 1^{3}, \ldots\right\} \\
\operatorname{Accfut}_{L}(00) & =\left\{11,01^{3}, 0^{2} 1^{4}, \ldots\right\}
\end{aligned}
$$

$$
\operatorname{Acfut}_{L}\left(O^{k}\right)=\left\{1^{k},\left.O\right|^{k+1},\left.0^{2}\right|^{k+2}, \ldots\right\}
$$

(2) For any k, all set $\operatorname{Accfut}_{L}\left(O^{L}\right)$ are distinct. Why:
Aosfut $\left(O^{k}\right)$ contains 1^{k} but no other element of 1^{*}
So if $k \neq k^{\prime}\left\{\begin{array}{lccc}\operatorname{Accfut}_{L}\left(O^{k}\right) & \text { contains } & 1^{k} \text { not } 1^{k^{\prime}} \\ \operatorname{Accfut}_{L}\left(O^{k^{\prime}}\right) & 4 & 1^{k^{\prime}} & \text { not } 1^{k}\end{array}\right.$

- The short string in $\operatorname{Acctut}_{L}\left(O^{k}\right)$ is of length k. (i.e. l^{k})
(3) If there are infinitely many sets of the form AccEut (u) as u varies over $u \in \sum^{*}$, then L is non-regular Recall: if u, u^{\prime} fall in some DFA state

then

$$
\begin{aligned}
& \operatorname{Accfut}_{L}(u) \\
= & \operatorname{Accfut}_{L}\left(u^{\prime}\right)
\end{aligned}
$$

My hill-Neroor thm.
One mare tool!
(1) say we know $\left\{0^{n} l^{n}\right\}$ is nonregulas.

Claim! $L^{\prime}=\left\{\omega=0^{n} 1^{n} O^{m}\right.$ s.t.
(2) $\left.L^{\prime}=\quad n \in \mathbb{N}, m=0,1,2, \ldots\right\}$
is non-regular

$$
\left\{\left.0^{n}\right|^{n}\right\} \subset\{0,\}^{* x}
$$

non-regules reg

$$
\omega \in\left\{0^{n} 1^{n}\right\} \Rightarrow \omega \in\left\{0^{n} 1^{n} 0^{m}\right\}
$$

(a) Still show $\operatorname{Accfut}_{L}\left(O^{k}\right)$ are all distinct
(still shortest element of $\operatorname{Accfut}_{2}\left(O^{k}\right)$ is length k)
(b) Say that $L^{\prime}=\left\{O^{n} 1^{n} O^{m}\left(\begin{array}{l}n \in \mathbb{N} \\ m_{n}=0, j_{1},-\end{array}\right\}\right.$ is regular. Then

Argument (b) takes non-reguler languages (proven somehow) and gree you mare non-reglular kingurges.

Remark: If L ' is nan-regular $L^{\prime}<\sum^{*}$, and \sum^{*} is regular,
but if you want to prove that L^{\prime} is non-regulw) and

$$
L^{\prime} \cap\left(\begin{array}{c}
\text { some known } \\
\text { regular } \\
\text { lomguege }
\end{array}\right)=\left(\begin{array}{c}
\text { some known } \\
\text { nonreguler } \\
\text { language }
\end{array}\right)
$$

$\Rightarrow L^{\prime}$ is nonregular

If L^{\prime} is nanreguks $\Rightarrow \sum^{*} \backslash L^{\prime}$ is nonreguler

Since reverse finch states wish nonfinol states

$$
\left(\left\{0^{n}, n\right\}\right) \cup\left(\{0,1\}^{k} \backslash\left\{0^{n}, 1^{n}\right\}\right)=\{0,1\}^{*}
$$

nor regrlv

$$
\{\text { odd perfect numbers }\}
$$

$$
\begin{aligned}
& (\underbrace{\{\varepsilon\} \cup\left\{0^{n} y^{n}\right\}}_{\text {nonregular }}) \circ(\underbrace{\{\varepsilon\} \cup\left(\{c, 1\}^{*} \backslash\left\{0^{n} l^{n}\right\}\right)}_{\text {non-regulur }} \\
& =\{0,1\}^{\star} \\
& (\{\varepsilon\} \leftrightarrow L) \circ\left(\{\varepsilon\} \cup\left(\sum^{*} \backslash L\right)\right)=\sum^{*} \\
& \varepsilon_{0}\left(K^{\star} \backslash L\right) \\
& \text { or } \\
& L \circ \varepsilon
\end{aligned}
$$

perfect numbers:

$$
\left.\left\{n \left\lvert\, \begin{array}{l}
\operatorname{sum}(f f \text { devisers of } n \\
\\
\\
\text { less than } n
\end{array}\right.\right) \text { equals } n\right\}
$$

6 divisible by $1,2,3,(6)$

$$
1+2+3=6
$$

28 dwisitle by $1,2,4,7,14$

$$
1+2+4+7+14=28
$$

$\{c \partial d$ perfect numbers\} \quad conj

$$
L=a\{a, b\}^{*}
$$

$\operatorname{Accfut}_{L}(\infty)=\varnothing$
but

$$
\begin{aligned}
& \left(\{a, b\}^{*} \backslash\left\{a^{n} b^{n}\right\}\right) \cap\left\{a^{n} b^{n}\right\} \\
& \begin{array}{l}
=\notin \AA\{\text { anyphin }\}=\left\{\begin{array}{l}
=\left\{a ^ { m } \left\{c, b b^{t} \mid\right.\right. \\
m \text { reg } \exp _{2}\left\{\begin{array}{l}
m \text { is an } \\
\text { even pome } \\
\text { number }>2
\end{array}\right\}
\end{array}\right\}
\end{array}
\end{aligned}
$$

these could describe same language ever if these expressichs are ven, different.

Suggest Probs (1) \& (5) of brakkout problens

$$
10: 22 \rightarrow 10: 32
$$

Show $\left\{O^{n^{2}} \mid n \in \mathbb{N}\right\}=L$

$$
V^{1}=\left\{0,0^{4}, 0^{9}, 0^{16}, \cdots\right\}
$$

is nonregular
Wext Thursdoy I'll reserve Roams (-? for random groups

$$
L^{\prime}=\left\{0^{n_{1}}, 0^{n_{2}}, 0^{n_{3}}, \ldots\right\} \begin{aligned}
& n_{1}, n_{2}, \ldots \\
& \text { incereon }
\end{aligned}
$$

then
mene $\operatorname{Accet}\left(0^{n_{i}}\right)=\left\{\varepsilon, 0^{n_{i+1}-n_{i}}, \ldots\right\}$
$\operatorname{Actfut}_{L}(0)=\left\{\varepsilon, 0^{4-1}=0^{3}, 0^{9-1}, \ldots\right.$
Accful $\left(O^{4}\right)=\left\{\varepsilon, O^{9-4}=O^{5}, \ldots\right.$
$\operatorname{Accfut}_{L}\left(O^{9}\right)=\left\{\varepsilon, B^{16-9}=0^{7}, \ldots\right.$
Claim: $2^{\text {rd }}$ smallest string in
$\operatorname{Accfut}_{L}\left(O^{k^{2}}\right)$ is $O^{2 k+1}$
So if $k \neq k^{\prime}, O^{2 k+1} \not \ddagger O^{2 k^{\prime}+1}$
hence $\left.\operatorname{Accfot}_{L}\left(O^{k^{2}}\right) \neq \operatorname{Accfut}^{\left(G^{\prime}\right)^{2}}\right)$
By contract $\left\{\varepsilon=0^{0}, 0^{7}, 0^{14}, 0^{21}, 0^{28}\right.$ is regular $\left(L^{\prime}\right.$,

Accfut ". LO k) deperds only on $k \bmod 7$
(5) $(a, a b, a b)^{*}:$ build a $D \in A$
for language \& ose $M-N$ thm to show thet you DFA hus fewest numbes of stutes

$$
\left\{\begin{array}{l}
\operatorname{Accfut}_{L}(\varepsilon)=\{\varepsilon, a b, a a b, \ldots,
\end{array}\right\}
$$

End of class

If L is regules $\Leftrightarrow L^{\text {comp }}=\Sigma^{*} 1 L$

Thinif L is nen regular $\Rightarrow \sum^{*} \backslash L$ is nonregular

PE: If L is nen-reguler, but $\sum^{*} \backslash L$ is regular $\Rightarrow \underbrace{\sum^{\star} \backslash\left(\Sigma^{k} \backslash L\right) \text { is reguler }}_{L}$

$$
\begin{aligned}
& L^{\operatorname{com} p}=\sum^{*} \backslash L \\
& \left(L^{\operatorname{com} p)^{\operatorname{comp}}=L}\right. \\
& \left\{\omega \in \sum^{*} \mid \text { follow } w \text { thru DEA get to qu }\right\}
\end{aligned}
$$

if wu leads to finallacreping state and w, w' both lead to q_{0} $\Rightarrow w^{\prime} u$ leads to find $\mid<c c e p o r y$ spicate

arces ct q_{1}

$$
L=\left\{a, a^{3}, a^{5}, \ldots\right\}
$$

If $\quad a^{6}$ and $a^{4} \rightarrow q_{0}$
then for an $w \in\{a\}^{*}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { either both } a^{6} w \text { as } a^{4} w \\
\text { final } \\
\text { sthute }
\end{array}\right. \\
& \operatorname{Accat}_{L}\left(a^{4}\right)=\left\{\text { non-final } \begin{array}{c}
\text { state } \\
\text { sur }
\end{array} a^{4} w \in L\right\} \\
& =\operatorname{Actert}_{L}\left(a^{6}\right)=\left\{\omega \mid a^{6} w \in L\right\}
\end{aligned}
$$

