CPSC 421/501, Oct 1, 2020
Section 1.2 [Sip] NFA's:

- NEA example (with $\delta(q, a)=\phi)$
- The: L recognized by an NFA \Rightarrow

1. same DFA.

- Cardlary!: Regular languages closed under \cap, \cup, complement, 0 ,*

Section 1.3 [Sip] Regular Expressions:

- Def of Regular Expression: any $U, 0, *$ of $\{$ single letter $\},\{\varepsilon\}, \phi$
- The: L describe) by a regular expression $\Leftrightarrow L$ is regular.
$\left[\begin{array}{l}\text { Some reaching far reg. exp. in strings } \\ \text { is to actually build NFA/DFA. }\end{array}\right]$

Breakout Room Questions:
(1) How many states needed to before bed recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by $c D F A$
(2) How many states needel to $\&$ beer before recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by an NFA
(3) If an NFA has 1000 states, its corresparning DFA may have roughly 2^{1000} states. Is there a relatively, quick way to see if the NFA accepts a given string?
(4) Give an NFA that recognizes

$$
\begin{aligned}
\left\{_{1}^{L}\right. & =\left\{\omega \in\{0,1\}^{*} \left\lvert\, \begin{array}{l}
\text { the } 3 \frac{\text { cd }}{} \text { to lost symbol } \\
\text { of } w \text { is } 1
\end{array}\right.\right\} \\
& =\{0,1\}^{*} \circ\{1\} \circ\{0,1\}^{2} \\
\text { fundament }{ }^{\text {th }} & =\left\{\sigma_{1} \ldots \sigma_{k} \left\lvert\, \begin{array}{l}
k \geqslant 3, \sigma_{1, \ldots,}, \sigma_{k} \in\{0,1\} \\
\text { with } \sigma_{k-2}=1
\end{array}\right.\right.
\end{aligned}
$$

(5) Give a DFA that recognizes L in question (4)

Remark: Same bonus question for HW 2 can be solved and submitted for HW \#3, but only counted once.

Bonus question: Last years I gave bonus questions for zero credit. These are beyond material.

And \# submissions was 0 .
This year, bonus questions addition 10%,
So this con add between 0 and $\%$ to your total grade.
NrA is like a DFA but (say $\Sigma=\{a, b, c\})$

call have ne b arrows
"jump" "reading the empty string, ε "
UFA, $N=$ non-deterministic: A string is accepted
by an NFA if there is at least ane way to go thru NFA and get to an accepting state.
eng. $\Sigma=\{a, b, c\}$
 recognizes

$$
L=\{a, c\}
$$

egg. $w=a b b$ as input 'y read an a
$\rightarrow(90) \xrightarrow{a, c} \underset{p}{(q)}<\cdots \cdots$ then yon recd b T
stout read the first a then yon reed b
but there are no
b arrow
each possible path, you can have

completion stops and fails

Why NEA's?
Ster operation over a

$$
\lceil\lceil\Gamma
$$

start te read sames a^{\prime} 's
when do you go from L_{1} to L_{2}

$$
\begin{aligned}
& \left(\begin{array}{ll}
\text { rem: } & \sum^{*}=\text { wards ass } t \\
& =\sum \text { with stat operation }
\end{array}\right)=\left\{a^{k} \mid \sum^{\text {divides } k}\right\} \\
& L_{2}=\left\{a^{5}\right\}^{*}=\left\{a^{\ell}(5 \text { wider } l\}\right. \\
& L_{1} 0 L_{2}=\left\{a^{k+l} \left\lvert\, \begin{array}{l}
3 \text { wides } k \\
5 \text { wides } l
\end{array}\right.\right\}, \sum=\{a\} \\
& \text { aaaa_a }=a^{13}=\left\{a^{3}\right\}^{*} \circ\left\{a^{5}\right\}^{*}
\end{aligned}
$$

Thm ' If L_{1}, L_{2} are reguler, i.e. there are DfA's recogrizing L_{1}, L_{2}, then $L_{1} 0 L_{2}$ is regular.

Precedure
DFA for L_{1}

Procedre: (1) junp from (O) in first mochive to $\rightarrow C$ in Sceard (2) eliminate $\rightarrow 0$ is second

Now DFA for L_{1}, DFA for $L_{2} \leadsto$, $N \nrightarrow A$ for $L_{1} \circ L_{2}$.

Observe! A DFA is an NFA.
And far ary NfA, there is an equivalent DFA,
i.e. if an NEA recognizes a language, L, then there is a DFA बecogntzing L.

Rem: $P=$ polytime algorithms,
$N P=$ non-determinislic polytime algorithns

$$
P \stackrel{?}{=} N P
$$

$$
\$ 10^{6}
$$

NFA allows a "look ahead" iden

How to convert an NFA to an equivatent DFA:

Idea: State set of DfA $=\operatorname{Power}(Q)$

$$
\binom{q_{0}, q_{1}}{q_{s}} \stackrel{\text { meaniy }}{\hookrightarrow} \begin{aligned}
& \text { Wher considery the NfA, } \\
& \left\{q_{0}, q_{1}, q_{s}\right\} \text { are all possible } \\
& \text { stetes }
\end{aligned}
$$

es.
NFA for

$$
=\left(q_{0}\right) \frac{L^{a}}{a}(q)\left(q_{2}\right)
$$

$$
\left\{a^{2}, a^{3}\right\}^{k}
$$

non-deterwinurtic comp tree
tree
Idea: Initially $\left\{q_{0}\right\}(1)$
Ream a: $\left\{q^{b},\right\}(2): \stackrel{\downarrow}{a}$ lot all

$$
\begin{aligned}
& \cdots \quad " a!\quad\left\{a_{1}, a_{0}\right\}\left(\frac{b}{4} \quad \stackrel{\vdots}{0}\right. \text { : } \\
& \left.u " \quad ":\left\{\begin{array}{l}
1\rangle \\
q_{0}, q_{2}, q_{1}
\end{array}\right\}\right\rangle_{0} y_{0}
\end{aligned}
$$

Problem: If NFA has m states $=|Q| Q$ fer NFA

$$
\text { DFA has } 2^{m} \text { states }=|\operatorname{Power}(Q)|
$$

Remark: States of DFA once were at $\left\{q_{0}, q_{2}, q_{1}\right\}=Q$ each "a" tokes $Q \rightarrow B$ Really have only 5 reachable states

Breakat rooms: I suggest
(3), then (2) or (4)
and make sure that you're comfortable with NEA's, DEA's
and taking NFA \rightarrow UFA

$$
[10: 27 \rightarrow 10: 37]
$$

Question (3) (Is this in [Sip] textbook?)
NEA has states $q_{0}, 9, \ldots, q_{99 q}$;
can we "implement" the carespending DEA with a practical algorithm?

DEA states are subsets of Q :
Can be there, or can't

$$
\overline{q_{0}} q_{1} \cdots \quad q_{a 9 a}
$$

example con car't can can'.... cant $\hookleftarrow\left\{\begin{array}{l}\text { can, } \\ \text { can't }\}\end{array}\right.$

$\underset{\substack{\text { guthm } \\ \text { theNFA }}}{ } \rightarrow \underset{\substack{\text { neat symbol } \\ \text { read }}}{ }$ (Acc bits)

Solution: If NFA has m orates DFA state $\longleftrightarrow m$-bits $\left\{\begin{array}{l}c \\ 1\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}c_{\operatorname{cin}}{ }^{\prime} t \\ \mathrm{con}\end{array}\right\}$

There is an talgarithm for ecch symbol of inpot take polytime in $\mathbb{N} f \mathrm{~A}_{\mathrm{A}}$ otktes, m.
(Dan't gareate a tuble of 2^{m} stales + transitions)

Breakat room (1) \& (2) $\left\{a^{5}, a^{7}\right\}^{*}$

$$
=\{\cdots\} ? \text { not easy... }
$$

Breckat room (4) \& (5) we will discuss these when we couer non-regular languages \& min \# states of DFA for a given larguage.

NEA's + DEAN !
If L_{1}, L_{2} regular \Rightarrow
$L_{1} 0 L_{2}, L_{1}^{\frac{\psi}{4}}, L_{1} \cup L_{2}$ is regulor
\Rightarrow any "regular expression" $\notin\{1.3$
e.g. $\{a, c\}$ bb $\{a, c, b c\} \quad\left[s_{1 p}\right]$
trepresents a language decognizable by an NFA

