CPS $421 / 501$

- Continue $\S 1.1$ of [Sip]
- The cost of excluding ε from $\{0,3,6,9,00,03$,
- Mare on DFA's $06,09,12,15, \ldots\}$
- $\left.A \cup B, A \cap B, A \circ B, A^{*}\right\} \begin{aligned} & \text { tale regkter } \\ & \text { kngu-ges, }\end{aligned}$
- Why $A \circ B$ and $A^{\text {are give new }} \begin{gathered}\text { regulus }\end{gathered}$ awkward with DFA's
ecg. $\left\{a^{3}, a^{5}\right\}^{*}$
- Start $\$ 1.2$ of [Sip]
- NFA's: non-determinism
- How they help with $A \circ B, A^{*}$

Breaker Rom m Questions?
(1) Give a $D F A$ that recognizes
(a) $\{\varepsilon, 0,2,4,6,8,00,02,04,06$, $08,10,12,14, \ldots\}$
(b) Same, but exclude ε
(C) $.1 . . . \quad \varepsilon$ and do not allow leading O's
(2) Give a DFA that recognizes

$$
\{0,3,6,9,12,15,18,21, \ldots\}
$$

(3) Is there a DFA that recognizes

$$
\{0,7,14,21,28,35,42, \ldots\}
$$

(4) How many states needed to recognize $\left\{a^{5}, a^{7}\right\}$ by a $D F A$
(5) How many states needed to recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by $c \operatorname{DFA}$
(6) How many states needed to recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by an NFA
(7) If an NFA has 1000 states, its corresponding DFA may have roughly 2^{1000} states. Is there a relatively, quick way to see if the NFA accepts a given string?

Canvas Survey: Roughly 40 students responded

- About $\frac{1}{2}$ wanted no breakout rooms (nagoblly 5 min break)
- "1 $\frac{1}{4}$ "r randomized breakout rooms
- い "
[Preference you can express?
Mouth, covering textbook [Sip], sometimes handouts
For DA's, look at [Sip], Exercises 1.1-1.6 for DAA's, § 1.1
e.9. $1.5 \quad{ }^{A_{a}}+\begin{gathered}A_{b} \\ b \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{gathered}$
$A=A_{\text {rowers }}$

Review $D F A^{\prime}$ s $=$ finite automate, $D=$ deterministic
L aver $\sum=\{a, b\}$
Take $L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}=\{a b, a a b b, a a a b b b$, $\left.a^{4} b^{4}, \ldots\right\}$
turns out to be non-regulor (prove this later)

A language is regular if it is recognized by some $D E A$.

Example:
$L_{\substack{\text { even } \\ \text { ais }}}\left\{\omega \in\{a, b\}^{*} \mid\right.$ w has an even \& of $\left.a^{\prime} s\right\}$

$$
\begin{aligned}
O & =\begin{array}{c}
\text { accepting } \\
(\text { or final) } \\
\text { state }
\end{array} \\
\rightarrow O= & \begin{array}{c}
\text { start } \\
\text { state }
\end{array}
\end{aligned}
$$

$$
\omega=\sigma_{1} \ldots \sigma_{1-}, \quad \sigma_{i} \in\{a, b\}
$$

$$
L_{\substack{\text { ever } \\
a \prime s}}=\left\{\varepsilon, a a, a a b, a b a, b a a, a a a a, \quad \begin{array}{r}
a a b b, \ldots
\end{array}\right\}
$$

$$
L_{\substack{\text { positive } \\
\text { aver } \\
t a i ' s}}=\left\{a, a a b, a b a, b a a, a a a a, \quad \begin{array}{l}
a a b b, \ldots
\end{array}\right\}
$$

 positure \#ás

posithive even 4 a's

Complement of $L_{\substack{\text { even } \\ \text { pos } \\ \forall c^{\prime} s}}$

Using notation: A, B sets, $A \backslash B=\{\omega \in A \mid$ $\omega \notin B\}$

Tells us: L is regular $\Rightarrow L^{\text {carp is regular }}$
PE: Switch accepting \longleftrightarrow rejecting states.
Theorems: If A, B kngeress aver \sum

$$
\begin{aligned}
& A \circ B=\left\{\omega_{1} \omega_{2} \mid \omega_{1} \in A, \omega_{2} \in B\right\} \\
& A^{*}=\left\{\omega_{1} \ldots \omega_{k} \left\lvert\, \begin{array}{r}
k=0,1,2, \ldots \\
\text { and } \\
\omega_{1}, \ldots, \omega_{k} \in A
\end{array}\right.\right\}
\end{aligned}
$$

If A, B regular, so is A aB, A^{*}.

Example: $\quad \Sigma=\{a\}$.

$$
\begin{aligned}
& L=\left\{a^{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& L^{*}=\left\{\varepsilon, a^{3}, a^{3} \circ a^{3}=a^{6}, a^{2}, a^{12}, \ldots .\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \sum=\{a\}, \quad L=\left\{a^{4}, a^{5}\right\}^{*} \\
& L=\left\{\varepsilon, a^{4}, a^{5}, a^{4} a^{4}, a^{4} a^{5}, a^{6} a^{4},\right. \\
& \left.a^{5} a^{5}, \ldots\right\}
\end{aligned}
$$

To recognibe $\left\{a^{4}, a^{5}\right\}$ with DFA is
not hard

$$
\begin{aligned}
& L=\left\{\varepsilon, a^{4}, a^{5}, a^{8}, a^{9}, a^{16}, a^{12}, a^{13}, a^{14},\right.
\end{aligned}
$$

not in $L: a, a^{2}, a^{3}, a^{6}, a^{7}, a^{11}$ $\left.a^{16}, \ldots\right\}$

You can show:

$$
L=\{\sum_{i}^{\varepsilon}, \underbrace{a^{4}, a^{5}}, \underbrace{a^{8}, a^{a}, a^{10}, n \geq 12}, \underbrace{a^{12}, a^{13}}_{a^{12}, a^{12}, \ldots}\}
$$

Write a DFA to recognize this:
Claim: $a^{\prime \prime} \notin L$ but $a^{n} \in L$ for $n \geq 12$ \Rightarrow (Myhill-Nerde)

$$
\begin{equation*}
\rightarrow(0) \stackrel{a}{\rightarrow} 0 \geqslant 0 \tag{a}
\end{equation*}
$$

L^{*} tricksy, \#states to recognize L^{*} can be much larger than to recognise L
Also

$$
\begin{aligned}
& A \circ B=\left\{\omega_{1} \omega_{2} \mid w_{2} \in A, w_{2} \in B\right\}
\end{aligned}
$$

If $\omega \in A \notin B$ then for some k,

$$
\begin{aligned}
\omega=\sigma_{1}-\sigma_{k} \text {, then } & \sigma_{1} \ldots \sigma_{l} \in A \\
& \sigma_{l+1} \ldots \sigma_{k} \in B
\end{aligned}
$$

bet you are nat told what is l.
For this reason: introduce
NF $(\xi 1.2$ (Sip]) \uparrow
non-deterministic finiric automate
We will use NFA to show
A, B regular, then $A \circ B, A^{*}$ are also regular.

Break 10:26:45
$10: 31: 45$

Idea: $L=\left\{a^{2}\right\}^{*} \sigma\left\{a^{3}\right\}^{*}$

Accept $\left\{a^{2}\right\}^{2}=\left\{\varepsilon, a^{2}, a^{4}, \ldots\right\}$
Accept $\left\{a^{3}\right\}^{*}$

$$
\begin{aligned}
& \begin{array}{c}
\text { Mere gneally } \\
L_{1} \rightarrow O \rightarrow O
\end{array} \\
& L_{2} \rightarrow O \rightarrow 0 \rightarrow 0
\end{aligned}
$$

Formelh, $N_{F A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

$$
\begin{aligned}
& \text { but } \delta: Q \times \sum_{\varepsilon} \rightarrow \sum_{\substack{ \\
\text { Subsets } \\
\text { of }}}^{\substack{\text { Set of }}}(Q) \\
& \Sigma_{\varepsilon}=\sum u\{\varepsilon\} \\
& \delta: Q \times \sum_{\varepsilon} \rightarrow \operatorname{power}(Q) \\
& N=\text { non-deterministic }
\end{aligned}
$$

Deterministic

Non-deterministiz

where

you don't process the next letter

Typreally: use jumps when recognize $A \circ B$ A^{*}
Another NFA fer $\left\{a^{4}, a^{b}\right\}^{\text {き }}$

$$
\rightarrow \underbrace{a}_{a} q_{2}^{a} q_{1} \stackrel{a}{a}\left(q_{y}{ }^{a}\left(q_{3}\right) \rightarrow\left(q_{4}\right)\right.
$$

See at Q3 or $^{\text {a }}$ cir move either from $q_{3} \rightarrow q_{4}$

$$
q_{3} \rightarrow o_{10}
$$

Language recognized by en NFA is $\left\{\omega \left\lvert\, \begin{array}{l}\text { there is some } \\ \text { allowable path thru IV FA }\end{array}\right.\right.$ allowable path thru $N+A$
that reaches a firal/acceping states
Neat time?

- More expirples of NfA
- any languages recognized by an NFA is regular, ie. \quad "some DEA,

