CPS $421 / 501$
Sept 24, 2020
Topics: - Set theory remarks

- Resolution of Russell's Paradox

I Involve "self-

- Some other paradoxes/theosems $\int \begin{aligned} & \text { reference } \\ & + \text { negation }\end{aligned}$
- Start Chi on Regular Languages [Sip]

Section 1: Finite Autoncth (DFA's)

- DFA: the idea
- $\Delta F A$ : definition $\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Regular Languages = recognized by same DEA
- $A \cup B, A \cap B, A \circ B, A^{*}$
- Why NFAis? [Answer: far A०B, $A^{*}$ ]

Section 2: Non-deterministic Finite Autamata
(NEA's)

CANVAS SURVEY AT END

Breckat Roan Questions:
(1) Come up with your cor paradox (related to those of $\$ 5,6$ of Handout)
(2) Give a DEA that recognizes

$$
\{0,3,6,9,12,15, \ldots\} \subset \quad\{0, \ldots, 9\}^{k}
$$

(3) Gee a DFA that recognizes

$$
\{0,3,6,9,03,06,09,12,15, \ldots\}
$$

(4) Gee a DEA that recognizes

$$
\{\varepsilon, 0,3,6,9,03,06,09,12,15, \ldots\}
$$

(S) Is there a DFA that recognizes

$$
\{0,7,14,21,28,35,42, \ldots\}
$$

(6) Give a DFA that recognizes

$$
\left\{1^{5}, 1^{7}\right\} \subset\{1\}^{*}
$$

(7) Give a DFA that recognizes

$$
\left\{1^{5}, 1^{7}\right\}^{*} c\{1\}^{*}
$$

Last Time:
(4) Is the set of functions $\mathbb{N} \rightarrow \mathbb{N}$ that you can describe boy a finite string in English: countable or uncountable?

$$
A S C I I^{k} \longrightarrow\left\{\begin{array}{c}
\text { meaningless } \\
\text { as Pundiur }
\end{array} \text {, or same function }\right\}
$$

(5) Yet, $\{\mathbb{N} \stackrel{\text { functions }}{\rightarrow} \mathbb{N}\}$ is uncountable; proof:
let's give a surjection $\{\mathbb{N} \rightarrow \mathbb{N}\} \rightarrow \rightarrow\left\{\begin{array}{c}\text { functions } \\ \mathbb{N} \rightarrow\{\text { yes, no })\end{array}\right\}$

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{N} \longmapsto \tilde{f}(n)=\{ \\
& \operatorname{our}(\mathbb{N}) \leftarrow \text { uncountable }
\end{aligned}
$$

Fact: If have surjection $S \rightarrow T$ and $\$$ is uncountable, then $S$ is uncountable Breakat $\rightarrow \mathrm{NW}$ $\{$ function $A \rightarrow \mathbb{N}\} \xrightarrow{\text { sur }}\{$ functions $A \rightarrow\{y e s, n 0\}\}$

$$
f \longmapsto \hat{f} \text { given by } \quad \hat{f}(\alpha)= \begin{cases}\text { yes if } f(a)=1, \\ n_{0} & \text { if } f(c) \geqslant 2\end{cases}
$$

really $\mathbb{N}$ surg) $\left\{y e s, n_{0}\right\}$

Cantor's The: Takes $\$ \rightarrow$ Power $(\$)$
forms $T=\{s \in S \mid S \notin f(s)\}$ is not in image $(t)$

$$
\uparrow_{\text {negation }} \ll \text { almost "self-referenrs" }
$$ about containment.

Russell's Paradox: If $R=\left\{S_{\text {set }} S \notin S\right\}$
you get a contradiction with either $R \in R$ or $R \notin R$
Resolution (you have ask a set theorist or logician) "the set of all sets" is too big to be set
so $\{$ Sestets blah \} ~ i r a n ~ b e ~ t o o ~ l a r g e ~ to be set

$$
\{S \mid S \notin S\} \leftarrow+\text { "self-refoncin" }
$$

S6 Handout gives a few mare:
Paradox (3): What is 'the smallest posituse
integer not described by a phrase in English of at most 100 words ? (ne hinder d? (less than $\left.\begin{array}{l}\text { lac words }\end{array}\right)$
Sang it's the number

$$
n=1573924163 \ldots 279
$$

"Bland's Paradox" (probably due to Russell)
self-reference + "not" = negation.
Parader (4) , 56!
Leslie write about (and only about) those people who do not write about themselves.

Does Leslie write about themseff? If yes -contradiction if no - " Also "barber paradox"
(Later": "Halting problem is undecidable
Proof! Assume it is decidable, and get a Contradiction via "self-referenchg" * "negation"

Chapter 1 in textbook by Sipser:
Regular Languages $\leftrightarrows$ languages described by $^{\text {" } \underbrace{\text { regular expression n" }}_{\text {Section }} \text { " }}$

Tee: $\quad \sum=\{a, b\}$,
Let $L=\left\{\omega \in \sum^{*} \left\lvert\, \begin{array}{l}\omega \text { has at least } 2 \text { a's }\end{array}\right.\right\}$
(in its set of symbols)
$=\{a a, a a b, b a a, b b a, b b a b b a b, \ldots\}$
Our algorithm ('informally):

- read each symbol (letter) of $w$, one by ane

$$
\omega=\sigma_{1} \sigma_{2}-\sigma_{k} \quad \sigma_{i} \in\{a, b\}
$$



Formally: A finite autoncter is S-tuple
 idea:
$(9,5) \mapsto \begin{aligned} & \text { what is the } \\ & \text { new state }\end{aligned}$ that you move to when in state $q$ you see a $\sigma$
Each finite automaton $(D F A), F H, F\left(Q, \Sigma, \delta, q_{0}, F\right)$ "recogniz es $L=\left\{W_{M}^{*} \left\lvert\, \begin{array}{l}\text { following the } D F A, \\ \text { you finish at the last }\end{array}\right.\right.$ symbol of $w$ in a state in $\sqrt{F}\}$

Def: $\sum$ alphatoet, $L \subset \sum^{*}, L$ is regular iff $L$ is recognized by some fimise automaton.

Otherwise we say $L$ is non-regular
Rem: $D E A \quad M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ ${ }_{\text {finite }}$

Example: Later $L=\left\{a^{m} b^{n} \mid m=n\right\}$ is non-regular

$$
\underbrace{a \ldots a}_{m} \underbrace{\uparrow_{n}^{b \ldots b}}_{n}
$$

Car specify a DEA by
(1) $\left(Q, \Sigma, \delta, q_{0}, F\right)$
(2) By graphs drawn written at using notation in [Sip]

Convention: EVEN $=\left\{\omega \in\left\{G_{5},-, 9\right\} \left\lvert\, \begin{array}{l}\omega \text { represents } \\ \text { an even } \\ \text { number }\end{array}\right.\right\}$

$$
=\left\{0,2,4,6,02, \quad\left\{\begin{array}{r}
\text { number } \\
? \\
\text { ? have },
\end{array}\right\}\right.
$$ to specify

Simple for $\in \mathbb{E}=\{\varepsilon \varepsilon, 0,2,4,6,8,00,02,04, \cdots$,
DFA

$$
10,12, \ldots\}
$$



Breakat rooms:
Problem (4), ther prollem (3)
of toody breakout room problem
Raughty 8-10 minutes

Problem (4):


DIV B. 3
EASY

$$
=\{\varepsilon, 0,3, 母, G, 03,03,0\}
$$

Quite SeA recognizing $\leq$ DNB:3
EASY


Q: How to modify fer $L=\{0,3,8,9,003,66, \ldots\}$

Now: Survey under "Quiz" for the canvas welopage "Survey After Class on Sept 24 "

