CPSC $421 / 501$
Sept 22,2020

- See Theory Subtleties

Not subtle: If T is uncountable, and there is a surjection $S \rightarrow T$, then S is uncountable.
Subtle: If there is an injection $S \rightarrow T$, then there is a surjection $T \rightarrow S$.

- Russell's Paradox
- Related Paradoxes (Section 6 of handout)
- Start Finite Automata (\$ 1.1 of Textbook)??

BREAKOUT ROOM PROBLEMS
(1) If S is countable, and there is a surjection $S \rightarrow T$, then T is countable. (Prove this)
(2) Is POWER $\left(\{a, b\}^{*}\right) \cup \mathbb{N}$ countable?
(3) Is there a bijection

$$
[2]^{\mathbb{N}} \rightarrow[3]^{\mathbb{N}}, \leftarrow \text { new notation }
$$

and can you describe one?
(4) Let F be the set of functions $\mathbb{N} \rightarrow \mathbb{N}$ that can be described in English (assuming a fixed, precise interpretation of English). Is F countable or uncountable?
(5) Let $\mathbb{N}^{\mathbb{N}}$ be the set of functions $\mathbb{N} \rightarrow \mathbb{N} . \mathcal{I}_{s} \mathbb{N}^{\mathbb{N}}$ countable or uncountable?

Today!. Finish the handout

- Breakout rooms (students may be able to form their our breckat roans, as of yesterday)

S5 of handout! Russells Paradox \& Set Theory Subtleties
OR (1) Why we consult with set theorists \& logicians
(2) How to find more countable and uncountable sets

Last time?
Center's Tho: Any map $S \rightarrow \operatorname{fowER}(S)$ is not surjection. Idea $T=\{s \in S \mid s \notin f(s)\}\} \begin{gathered}\text { kind of } \\ \text { a } \\ \text { negifferef. }\end{gathered}$ is not in the image of f. [Main tool for uncountable sets.]

Implies: Power (IN)) is uncountable

Textbook, $\$ 4.2$ proves then \mathbb{R} is uncountable, wheres \mathbb{N}, \mathbb{Z} (integers), \mathbb{Q} (rational number) are countable.

Last time $\mathbb{N} \times \mathbb{N}=\mathbb{N}^{2}=\{(a, b) \mid a, b \in \mathbb{N}\}$ is countable

Proof 1: $(1,1)$

$(2,1)$	$(1,2)$	
$(3,1)$	$(2,2)$	$(1,3)$
\vdots		

$$
\begin{aligned}
& { }_{(1,1)}^{\swarrow} \\
& (1,2) \\
& (2,1)^{\swarrow} \\
& (2,2)^{\swarrow} \\
& (1,3) \\
& (3,1)^{\swarrow} \\
& \vdots \\
& \vdots
\end{aligned}
$$

Idea

$$
\left.\begin{array}{l}
(3,5) \leadsto 35 \\
(17,1) \leadsto 171 \\
\mathbb{N}^{2} \rightarrow \mathbb{N}
\end{array}\right\}
$$

Fix: (Godel numbering) $\quad(3,5) \rightarrow 2^{3} 3^{5}$

$$
\begin{aligned}
& (17,1) \rightarrow 2^{17} 3^{1} \\
& \vdots \\
& (a, b) \rightarrow 2^{a} 3^{b}
\end{aligned}
$$

Give mop $\quad \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ injection
Since $2^{a} 3^{b}=2^{a^{\prime}} 3^{b^{\prime}} \Rightarrow \quad \begin{aligned} & a=a^{\prime} \\ & b=b^{\prime}\end{aligned}$

Our definition! A is uncountable, if there exist no $\operatorname{man} \quad f: \mathbb{N} \rightarrow A$ that is subjective.

Here: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ is injective
Can you prove: if there is an injection $S \rightarrow \mathbb{I V}$, is there
a surjection $\mathbb{N} \rightarrow S ? ? 77$?

This is true for finite sets

$$
[3]=\{1,2,3\}, \quad[4]=\{1,2,3,4\}
$$

ingectven $[3] \rightarrow[4]$ OR $[3] \rightarrow[4]$

and surjection $[4] \rightarrow[3]$

Intuition! If there is an injection $S \rightarrow T$

$$
" \operatorname{size}(S) \leqslant \operatorname{size}(T)^{"}
$$

$$
\begin{aligned}
& 1 \longrightarrow a \\
& 2 \longrightarrow a \\
& 3 \xrightarrow{\longrightarrow} b
\end{aligned}
$$

Intuition: If there is a surjection $T \rightarrow S$ then "size $(T) \geq \operatorname{size}(S)$ "

Is it true that (1) \exists swjectin $T \rightarrow S$? \Leftrightarrow (2) \exists injection $S \rightarrow T$

For ST finite, or $=\mathbb{N}$ y yes
"S,T subtle (assumptions on "cardinelix,")

If we assume this then
\& surjection $\mathbb{N} \rightarrow S \Leftrightarrow \underbrace{\text { injection } S \rightarrow \mathbb{N}}$ "countable" an equivalent form

Example: $\quad \mathbb{N}^{2} \rightarrow \mathbb{N}$

$$
(a, b) \mapsto 2^{a} 3^{b} \quad \text { is in injection }
$$

$$
\Rightarrow \quad \exists \text { a surjection } \mathbb{N} \rightarrow \mathbb{N}^{2}
$$

To build: look at $x^{2^{a} 3^{b}} x^{2^{4} 3^{b}} \quad 2^{2} 3^{1}$
in image of

$$
\mathbb{N}^{2} \rightarrow \mathbb{N}
$$

not easy to describe map $\mathbb{N} \rightarrow \mathbb{N}^{2}$ based on the map $\mathbb{N}^{2} \rightarrow \mathbb{N}$
(If S is countable, and there is a surjection
$S \rightarrow T$, then I is countable
If S is cantable, and there is an injection
$S A X$, then T is countable

$$
T \rightarrow S
$$

Clams: If T is uncoiontalle and

Russell's Paradox: Let R be the set of Sets that do not contain themselves.
Does $R \in R$?

$$
R=\{S
$$

Either $R \in R$ or $R \notin R$.
(1) $R \in R$ then R is a set sit. $R \notin$, Pontradion -) also a contraction

Related paradox: Does the set of all sets contain itself.

Next: we describe a few mave $\left\{\begin{array}{l}\text { "paraduxes" } \leftarrow \text { Russel's } \\ \text { "thms" } \leftarrow \text { Canter's }\end{array}\right.$ thm.

$$
[n]=\{1,2, \ldots, n\}
$$

Wotation:
\nearrow
set $\&$ functions from
Notation TS
E.g. \quad PRImES $=\{2,3,5,7,11, \ldots\} \quad \subset\{0, \ldots 9\}^{*}$ $\lambda_{\text {leftat }} 02,03$
i.e. PRImGS is a language over $\{c, \ldots, q\}=\sum$ alpherare
PRImES

0	\longrightarrow	no
1	\longrightarrow	no
2	\longrightarrow	yes
3		
9	\longrightarrow	no
oo		
0		

$02 \rightarrow\left\{\begin{array}{l}\text { no } \\ \text { yes }\end{array}\right.$ depends on if you cllow leadmy zercs

More generally
(1) Ianguage over \sum
(2) elt of Powr (Σ^{*})
(3) a decision $\sum^{*} \rightarrow\{$ yes, no $\}$
(4) an element of

$$
\{\text { yes, no }\}^{\sum^{*}}=\left\{\text { functions } \sum^{*} \rightarrow\{y e s, n o\}\right\}
$$

$10: 26 \sim \curvearrowright \sim 10413$
My watih 10:28 an \rightarrow 10:43
15 minute breakout, or so

Breakat: (4) \& (5)
function $\mathbb{N} \rightarrow \mathbb{N}$ describe in English.
"The function tarng 1 t. 17,2 to $23, \ldots$ alloow infinite
But finite strugs
"The function taling x to $\operatorname{sqrt}(x)$." \rightarrow interprot

Strings in ASCIE $=$ ASCIJ countable
(5) $\{$ functions $\mathbb{N} \rightarrow \mathbb{N}\}$ uncourtadle

$$
\Leftrightarrow \quad \mathbb{N} \rightarrow\{\text { yes, no }\}^{E}
$$

$\Leftrightarrow \quad \operatorname{POWER}(\mathbb{N})$ uncantulile
(1) S countable, surj $S \rightarrow T$ then
(2)

$$
T \text { is coutrible }
$$

\Rightarrow surj $\rightarrow T$ and uncantuble
then uncountuble

Next time: finish this discussion

- Rebolve Russall's paradox
- 1-2 paraduz
- Texthook CL.I, Regular Lary.

$$
\begin{aligned}
& \sum=\{a, b, c\} \\
& \sum \quad \Sigma^{c} \\
& a b<\sum^{\prime} \\
& a a c b a c \ldots c c \sum^{2} \\
& \{c,\}^{*} \mathbb{N}=\left\{\begin{array}{l}
\{(1),(1,(3),(4),(5), \ldots .\} \\
\varepsilon, C, 1,0 e, 01, \ldots .
\end{array}\right\}
\end{aligned}
$$

Some
function
or mecningless
some
function or
meaningbss

