CPSC $421 / 501$ Sept 17,2020
Topics for today or soon:
Section 4 of handout:

- Countable Sets, Uncountable Sets
- Center's The

Sections 5 and 6

- Russell's Paradox and Set Then Subtleties
- Related Paradoxes and Theorems

BREAKOUT ROOM PROBLEMS
(1) Show that $\mathbb{N} \times \mathbb{N}$ is countable
(2) Show that $\mathbb{Z} \times \mathbb{Z}$ is countable
(3) Let $f:[4] \rightarrow \operatorname{Power}([4])$
(where $[4]=\{1,2,3,4\}$) be given by:

$$
f(1)=\varnothing, \quad f(2)=\{1,2\}, \quad f(3)=[2,4\}, \quad f(4)=[4]
$$

Describe $T=\{S \in[4] \mid S \notin f(5)\}$.
Convince yourself that I is not in the image of f. $[$ This is not a precise task. $]$
(4) Is $\operatorname{Power}\left(\{a, b\}^{*}\right) \cup \mathbb{N}$ countable?
(5) Find an example of an infective andlor surjective andlor bijective map to help you remember these term. [This is not a precise question.]

$$
e . g,\{\text { students }\} \underset{\text { inj }}{\longrightarrow}\{I D \text { numbers }\}
$$

Admin Stuff:
(1) Individual Homewerk $1 \quad\left\{\begin{array}{l}\text { write up individually } \\ \text { say whom yon }\end{array}\right.$ worked with Grape Homework $1\left\{\begin{array}{l}\text { submit as a group }\end{array}\right.$ same grade as your Iou can work in groups ot up to 4 grupmembers

Gradescape thigh up thru Canvas
LaTeX not necessary, but must be easily readable
[Group of 1 is OK.]
(2) Breakout rooms?

- Assign rardonally today
- Perhaps you pick out groups soon on Zoom
- Breckat problems cuaílable before class on course webpage
(3) Try to listen to tape lectures in a recsonblole time frame;
(9) Reccrong of lectures are avcibledole through the Zoom like on Cosuruas CPSC 421/sol page.

Return to:
A set, S, is countaloly infinite if there is S is the some size es

$$
\mathbb{N}=\{1,2,3, \ldots\} .
$$

$\left[\begin{array}{l}\text { Recall: } S \text { and } T \text { have the same size } \\ \text { if there is a bijection } S \rightarrow T \text {. }\end{array}\right]$

We can sercrike fo via

$$
\begin{aligned}
& f(1)=b, \quad f(2)=a, \quad f(3)=c \\
& \left\{\begin{array}{l}
\text { Injection } \\
\text { Injectwe map } \\
\text { "one-to-one" } \\
\frac{\text { into }}{\text { into }}
\end{array}\right\} \text { like } \\
& 2
\end{aligned}
$$

If there is con injection $S \rightarrow T$, then $|S| \leqslant|T|$.

Example $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ is countable (ewenthough IN $\underset{\text { proper }}{C} \mathbb{Z}$)

$$
\begin{array}{ll}
\mathbb{R}: & 0,1,-1,2,-2, \ldots \\
& \hat{\imath} \hat{\imath} \hat{i} \hat{\imath} \hat{L} \\
\mathbb{L} & 1,2,3,4,5, \ldots
\end{array}
$$

Example: Positive rational numbers are countable (in textbook)

sometimes it convenient not to have discard extra ceres
S is countablay infinite if it has scme size as IN.
S is countclole if either
(1) S is fuite, or
(2) S is countably infinite.

Thm: S is cowntable iff
there is a surjectore map
$N \rightarrow S$

Iden: $\quad S=\{1,2,3\}$
list elements of S in sequence

$$
\begin{array}{rll}
S & 1,2,3,3,3,3, \ldots & \text { surjection } \\
\mathbb{N} & \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
1,2,3,4,5,6,7 \ldots
\end{array}
$$

S is uncountable if S is not countable, i.e. there is ne surjection $\mathbb{N} \rightarrow S$.

Examples (1)
Set of languages over a finite alphabet Λ

$$
=\operatorname{Power}\left(\Lambda^{*}\right)=\left\{\text { subsets of } \Lambda^{4}\right\}
$$

eff., $\quad \Lambda=\{0,1, \ldots, 9\}$ Most importable

$$
\text { Primes }=\{2,3,5,7,11, \ldots\}
$$

Primes $\in \operatorname{Power}\left(\Lambda^{*}\right)$
Example (2) $\mathbb{R}=$ real numbers are uncountable.

Also Λ^{*}, for any fortiphatret Λ (finite subset) is countable

$$
\begin{aligned}
& \Lambda=\{a, b, c\} \\
& \Lambda^{k}=\Lambda^{0} \cup \Lambda^{\prime} \cup \Lambda^{2} \cup \ldots \\
& \\
& \varepsilon \quad a, b, c \quad a a, a b, a c, b a, b b, \\
&
\end{aligned} \begin{aligned}
& \quad, c c
\end{aligned}
$$

you can write all of Λ^{*} as a Sequence, equivalently Λ^{*} and $I N$ has the same size.
algorithm subset of (say) ASCII* or Λ^{*}
of languages is uncountable,

Fundamental tool to prove a language is uncountable is Cantor's theorem.

Cantor's Theorem: If S is a set, and $f: S \rightarrow \operatorname{Power}(S)$, then f is not surjective; movecver

$$
T=\{s \in S \mid s \notin f(s)\}
$$

then T is not equal to $f(t)$
for any $t \in S$; i.e. T is not in the [The image of a map $g: \bar{U} \rightarrow \sqrt{\text { image of }}$ those $\underbrace{v \in \bar{V} \text { sit. } v=g(u) \underset{\substack{\text { for } \\ \text { some }}}{ } u \in \mathbb{J}}\}$
$e . g$,

$$
b \neq f(1), \quad b \neq f(2)
$$

$v \in V$ sit. $V=g(u)$ for some \bar{J}

$$
\begin{aligned}
& \text { Soy }: \\
& \text { ExAmple: }
\end{aligned} \left\lvert\, \begin{gathered}
f: \underbrace{\{1,2,3\}}_{[3]} \rightarrow \operatorname{Power}(\{1,2,3\})
\end{gathered} \rightarrow \operatorname{Power}([3])\right.
$$

sit.

$$
f(1)=\{1,2\}, f(2)=\varnothing, \quad f(3)=[3]
$$

$$
\begin{aligned}
T \notin f(1) & 1 \in f(1) \\
\{1,2\} & 1 \notin T \\
T \neq f(2) & 2 \notin \phi \\
\phi & 2 \in T
\end{aligned}
$$

Proof: If $T=f(t)$ for sume $t \in S$
Either (1) $t \in T$ ar (2) $t \notin T$, but boin (1) \& (2) are impossible:

$$
\begin{aligned}
& (1) t \in T)=\{s \in S \mid s \notin f(s)\}, \begin{array}{c}
t \notin f(t) \\
\frac{11}{T}
\end{array} \\
& \text { (2) simikrly imporsib } \\
& \operatorname{Pover}([3])=\{d,\{1\},\{2\},\{1,2\}, \ldots\{1,23\}\}
\end{aligned}
$$

$[3]=\{1,2,3\}$ notatian

Cor: If S is countabley, infirite ther Power (S) is uncountable.

$$
\mathbb{N} \stackrel{b_{i j}}{\Longleftrightarrow} S
$$

if Powerls) were countable then you have mop

$$
\begin{gathered}
\text { IN Sur's } \\
\substack{\text { sowar }(S) \\
S \\
S}
\end{gathered}
$$

Breckat rooms: Pick ane or two of problems (1), (3), (5) above
(5) maps to help remember $\left\{\begin{array}{l}\text { injective } \\ \text { surjective } \\ \text { bijectrve }\end{array}\right.$
(1) Show that $\mathbb{N} \times \mathbb{N}$ is countable
(3) Let $f:[4] \rightarrow \operatorname{Power}([4])$
(where $[4]=\{1,2,3,4\}$) be given by:
$f(1)=\varnothing, \quad f(2)=\{1,2\}, \quad f(3)=\{2,4\}, \quad f(4)=[4]$,
Describe $T=\{s \in[4] \mid S \notin f(s)\}$.
Convince yourself that T is not in the image of f. [This is not a precise task.]

$$
\mathbb{N} \times \mathbb{N}=\mathbb{N}^{2}=\{(a, b) \| a, b \in \mathbb{N}\}
$$

$$
\begin{aligned}
& (1,1)(1,2)(1,3) \\
& (2,1)^{K}(2,2)^{k}(2,3) \\
& (3,1)^{k}(3,2)^{k}(3,3) \ldots
\end{aligned}
$$

Idea $1,1 \rightarrow 11 \quad 101$
$1,2-12 \quad 102$

$$
15,3 \rightarrow 153 \quad 1503
$$

$$
\begin{aligned}
& 1,53 \rightarrow 153 \quad 1053 \\
& \text { order by } \\
& < \\
& 101,102,201, \ldots \\
& (1,1) \quad(a, b) \text { lock at } \\
& (1,2) \quad(2,1) \\
& (1,3) \quad(2,2) \quad(3,1)
\end{aligned}
$$

Describe

$$
\begin{aligned}
& (1,1) \longleftrightarrow 1 \\
& (1,2) \longleftrightarrow 2
\end{aligned}
$$

$$
(2,1) \leftrightarrow 3\left(2, a_{\text {wive }} a\right.
$$ formula

