CPSC $421 / 501$ Sept 15
(-Review strings(war)s \& languages

- State th: there is no surjection $\sum^{*} \rightarrow \operatorname{Power}\left(\Lambda^{*}\right)$ for alphabets \sum, Λ and explain relevance
today - Prove this tho using set theory an Thursday
C-Russell's Paradox \& Other paradales/thms with negation + self-refornces today and for Thursday

All this is in the first handout:
Self-referencing, Uncountability, and Uscomputability
Well go around 10:20 (50 minutes), breakout rooms in Zoom for some problems (typically from Z019 homework or 2019 webpages - review midterm meet back; discussion/questirn

I'Il post office hours for tomorrow by this afternoon.

Homework teams of up to 4 students;
same problems written up by each student

$$
\because \quad . \quad \because \quad \text { by the team }
$$

Last time $\left\{\begin{array}{l}\text { start of handout } \\ \text { Ch. O of textbook: Introduction to the }\end{array}\right.$ Theory of Computing, By M: Sipser $3^{\text {rd }}$ Edition

An alphabet, \sum, is any finite, non-empty set.

$\sum^{k}=k$-tuples of elements of \sum

$$
\begin{aligned}
& \begin{array}{l}
\left(\sum=\{a\}, \quad \sum^{4}=\{(a, a, a, a)\} \stackrel{\text { mare simply }}{=}\{\text { a } a, a\}\right. \\
\sum \times 5 \times+5
\end{array} \\
& \underbrace{\sum \times \sum \times \ldots \times \sum}_{k+h} \\
& \text { ordered } \\
& \text { tuples } \\
& \sum^{0}=\{\varepsilon\} \quad \varepsilon=\text { empty string } \\
& \mathcal{L}=\{a, b\}, \mathcal{E}^{2}=\{a a, a b, b a, b b\}
\end{aligned}
$$

literally $a b$ is really (a, b)
¿ string!

$$
\begin{aligned}
& \text { Concatenation: } a b a c b b \\
& =a b a b b \\
& \sum^{k} \circ \sum^{l} \xrightarrow{\text { conan }} \sum^{k+h} \\
& \text { Eoaba } \\
& =a b a
\end{aligned}
$$

\sum is an clplebet
"Set of strings are $\Sigma^{"}$ notation Σ^{*} is just

$$
\sum^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots=\bigcup_{m=1}^{\infty} \sum^{m}
$$

Claim: Any C-program is a string over
ASCII alphabet,

$$
|A S C I J|=256 \text {, has } a, \ldots z, A, \ldots z, 0,1,2, \ldots, 9
$$

This is mostly true, (it does depend on how you interpret a C program - what built in libraries, etc.)

Similark, any book in English is an ASCII string (ignore illustrations, etc.)

There are many notions of an algorithm:
(1) $C_{\text {program }}$ (2) Javascript program
(3) Turing machine
(4) Deterministic Finite Autamaton
(Ch:3)
DEA (Ch.1)

All be written with some understanding - as
finite strings ours some fixed finite alphabet.
Q.g. indentation - you have to agree on some convention

Turing machines \& DFAs as well
Compound wards: Antidisestablishmentarionioth

Algorithms $\stackrel{\text { interperdetion }}{ }$ finite length
stings over some alpharate Σ

Language over an alphabet, \sum, is a subset of

$$
\sum^{*}
$$

eng.
$\sum=\{0,1, \ldots, 9\}$, language of er \sum malude:

$$
\begin{aligned}
\text { PRIMES }=\{2,3,5,7,11,13,17,19, \ldots & \} \\
\underbrace{17}_{\text {(itorll }} 17 \text { mean } & (1,7) \\
\text { SQUARES } & =\{1,4,9,16,25,36, \ldots\} \subset \sum^{*} \\
& =\{0,1, \ldots, 9\}^{*}
\end{aligned}
$$

Ger $\sum=\{a, b\}$
"PALINdROMES OVER $\{a, b\}$ "

$$
=\{\varepsilon, a, b, a a, b b, a a a, \ldots\}
$$

not $a b$ or $b a$ or $a a b$

$$
=\left\{\sigma \in \sum^{*} \mid \quad \sigma^{\text {reverse }}=\sigma\right\}
$$

where

$$
\begin{aligned}
& \sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right), \mid \sigma^{\text {reverse }}=\left(\sigma_{k}, \sigma_{k-1}, \ldots, \sigma_{1}\right) \\
& \text { or } \sigma_{1} \ldots \sigma_{k} \quad=\sigma_{k} \sigma_{k-1} \ldots \sigma_{1}
\end{aligned}
$$

A language: Pig. PRIMES
SQUARES
PALINDROME OVER E
can be viewed as decision problem
formally! A decision problem over \sum (where E is en $\left.\begin{array}{l}\text { alphabet }\end{array}\right)$ is any subset of \sum^{*}. The set of all languages
$\operatorname{aver} \sum=\operatorname{Power}\left(\Sigma^{*}\right)$
where S any set, $\operatorname{Power}(S)=$. 'set of all $\begin{aligned} & \text { subsets of } S\end{aligned}$
Theorrern! For any apphertets Σ, Λ, $\operatorname{any} \operatorname{map} \quad f: \sum^{*} \longrightarrow \operatorname{Power}\left(\Lambda^{*}\right)$
is not surjective, i.e. there is some
$L \in \operatorname{Power}\left(\Lambda^{*}\right)$ sit, there is no $\sigma \in \sum^{*}$ with

$$
f(\sigma)=L
$$

Application: For the notions of "algorithm" in CPSC 421/501 (DFA's, turing machines, etc.) there are decision problems that can't be solved:

Goal is to prov this, and the will be useful to speak countable/un countable sets.

Set: $\{1,2,3\},\{a, b\}, \quad\{$ leagues $\operatorname{avar} 1\}$

$$
=\operatorname{Power}\left(n^{*}\right)
$$

$f: S \rightarrow T$ map of sets S, T is
(1) infective if $S_{1} \neq S_{2}, S_{1}, s_{2} \in S$ then $f\left(s_{1}\right) \notin f\left(s_{2}\right) ; \quad$ e.g. student ID numbles -

$$
\{\text { UBC stucants }\} \longrightarrow\{0, \ldots, 9\}^{8} \quad\left\{\text { "injecture" }^{\prime \prime}\right. \text { sume }
$$

(2) surjective if $\forall t \in \mathbb{I} \quad \exists s \in S$
for all t in T there is some $S \in S$
sil. $\quad f(s)=t$.
(3) bijective if it is injectire \& surjective (also celled one-to-one correspondence)

$$
\left.\begin{array}{rl}
\text { e.g. } & \{1,2,3\} \xrightarrow{f}\left\{\left(\ddot{\ddots},\left(\begin{array}{l}
\ddots \\
0
\end{array}, \cdots\right.\right.\right. \\
m
\end{array}\right\}
$$

eig. Surjective
Joel gardans:

$$
\begin{aligned}
& \text { f: }\{\text { Monday,.., Sunday }\} \rightarrow\left\{M_{\text {int }}, \text { Basil, relax }\right\} \\
& f: \quad S \quad T \\
& \text { "domain" "range" }
\end{aligned}
$$

f(could mas

$$
\begin{aligned}
& \text { warp or letlive, } \\
& \text { bad... }
\end{aligned}
$$

Say that S and I have the same size if there is a bijection $f: S \rightarrow T$.

We say that T is larger than S if there is no Surjection $S \rightarrow T$.
S, T finite, and $|S|=$ of elements in S
\exists bijection $S \rightarrow T$ iff $|S|=|T|$
but

$$
\begin{aligned}
\text { but } \mathbb{N} & =\{1,2,3,4,5, \ldots\} \\
\mathscr{L}: \mathbb{Q}_{>0} & =\{\text { reositwe ratimals }\} \\
\mathbb{Z} & =\{0,1,-1,2,-2, \ldots\}
\end{aligned}
$$

all have Same size
cig, ever thought $\mathbb{N} \underset{\text { proper }}{C} \mathbb{R}$

$$
1,2,3,4,5, \ldots \mathbb{N} \text { naturals }
$$

bijection $\downarrow, \downarrow, \downarrow, \downarrow, 1,-1,2,-2, \ldots$ integer

Questions for discussion (random breakat)
(1) HW:

- do the followings sets have the same size as \mathbb{N}
Hint! Hes the sure $-\{$ functions free $\{C, 1\} \rightarrow \mathbb{N}\}\}$
this one (d)essn't $\{$ functions from $\mathbb{N} \rightarrow\{0,1\}\}$
(2) Give an "intuitive example" of injectim/surjection
(3) Come up with a surprising injection / surjection / bijectia
(4) If f, g are surjections, $f: S \rightarrow T$
$g: T \rightarrow U$
is $\quad g \circ f!S \rightarrow U$ and why? can you prove?

Usu can currently do $(2,3,(4) \in$
Next time we will do (1),

