CPSC 421/501 Sept 15
(- Review strings (words & languages
- State thm: there is no surjection ∑# → Power(1) for alphabets ≥, 1
and explan relevance
and explan relevance ordinately and explan relevance ordinately and thursday ordinately and thursday
- Russell's Paradox & Other paradoxes/thms with negation + self-references
today and for Thursday
All this is in the first handout! Self-referencing, Uncountability, and Uppeampotability
We'll go around 10:20 (50 minutes), breakant norms in From
We'll go around 10:20 (50 minutes), breakout rooms in Farm for some problems (typically from 2019 homework or 2019 webpages - review midtern review final
meet back; discussion/question
I'll post office hours for tomorrow by this afternoon.
I IT post office hours that tomortons of this state
Homework teams of up to 4 students;
,
some problems written up by each student

Last time start of handout

(Ch. O of textbook! Introduction to the Theory of Computing, by Mi Sipser 3rd Edition An alphabet, &, is any finite, non-empty set. The elements of Z are called symbols or <u>letters</u>

The elements of Z are called symbols or <u>letters</u>

The elements of Z are called symbols or <u>letters</u>

The letters of the literature $\Sigma = \{a,b\}$, $\Sigma^2 = \{aa,ab,ba,bb\}$ literally ab is really (a,b)

E strme! aba e bb Concatenation: = ababb $\sum_{k=1}^{k} \sum_{j=1}^{k} \sum_{k=1}^{k} \sum_{k$ E aba = aba E is an alphabet "Set of strings over 5" notation 5 th is just Clam: Any C-program is a string over ASCII alphabet, ASCII = 256, has a, = 7, A, -7, 0,1,2,-,9

This is north tre, (it does depend on how you
interpret a C program - what built in library etc.)
Smilarly, any book in English is an ASCII string
(ignore illustrations, etc.)
There are many notions of an algorithm:
(1) C program (2) Javaseript program
3 Turing machine (4) Deterministic Finite Automaton
(Ch.3) DFA (Ch.1)
All be written — with some understanding - as
finite strings over some fixed finix alphabet.
e.g. indentation - you have to agree on some
Convention
Turing machines & DFAs as well
Compard words: Antidisestablishmentarionisth

(Merpresidin finite knoth strys over some Algorithms alphant 5 Language over an alphabet, E, is a subset of = [0,1,-.,9], languages over 5 molude: PRIMES = { 2,3,5,7,11,13,17,19, --- } <5* (iteally (7 mean (1,7) SOUARES = {1, 4, 9, 16, 25, 36, ---} C = * = { C,1,--,9}* Over 2 = { a, b } "PALIHAROMES OVER {a,b}" = { ε, α, b, αα, bb, ααα, ... } not ab or ba er ach

is not surjective, i.e. there is some L ∈ Power (N*) sit, there is no σ ∈ ∑* wish $f(\sigma) = L$ Application: For the notions of "algorithm" in CP5C 421/601 (DFA's, Tring machines, etc.) there are decision problems that can't be solved; f: \sum to solve decision posters \ or \ decides some language God is to prove this, and this will be useful to speak countable un countable sets. Set: $\{1,2,3\}$, $\{a,b\}$, $\{languages over <math>\Lambda\}$ = Power (N*) f:5-> T map of sets S,T is (1) Injective if S, #Sz, S, Sz & Then f(s,) + f(sz); e.g., Stodent ID numbers—

{UBC shownts} >> {C,-,9}8 { injedure same
(2) surjective if $Y \in T$ $JS \in S$ for all t in T there is some $S \in S$
st. (s) = t.
(3) bijective if it is injective & surjective
(also called one-to-one correspondence)
$\{1,2,3\} \xrightarrow{f} \{0,0,0\}$
f(i) = (i), f(2) = (i), f(3) = (i)
e.g. Swjective Joel gardens!
Monday - Mint
Tuesday - Besil
Wed
The hit everything
Sct, Sun -> relex

this one doesn't of functions from IN-> {0,1}} (2) Give an "intuitable example" of injection / surjection (3) Come up with a surprising injection/surjection/bijection 4) It f, g are swjections, f: S-T g: T-DU is got: S -> 0 and why? can you prove? You can corrently do &, &, &, &) & Next time we will do (1);