CPS $421 / 501$
Today: - Class Policy

- There are more (decision) problems than algorithms

Classes: (50 minutes of lecture (questions (this will be recorded) (10-15 break/warking in groups on older problems
from previous hamewart \& exams from previous homework \& exams (buck together - questions, more material| painters)

Material - roughly that of 2019 course,
This year - Pandemic

- CPSC 501 typrally has 5-8 students this year has 22 "

CPs 421 ! Goading scheme
$\because S O 1!90 \%$ CPSC $421+10 \%$ Presentation Last 2 weeks Classes $\underbrace{\text { Last }}_{\text {reading lar more }}$ articles

This yer! last 2 weeks of classes: - - ese 501 Presetting
(No easier, but fewer tapies)

CPSC 421 Grade!
$10 \% \max (f i n a l$, midterm, homework)
$+35 \% \max (f i n a l$, midterm)
$+55 \%$ final [don't need to pass the final to pass the course...]

HW! You con work in teams, Bp to 4 people, but

- on some problems you can a single joint solution
- ". " you have to write op your own solution

Encouraging finding a team to work with (you car charge team at any time, you con work by yourself)
Piazza page" "Introduction" topic"; post brief bio, use this to help form teams

Homework due generally Wed nights, 11:59 pm

- All classes recorded
- These ipad notes or "board scans" posted
- All material covered in textbook and/ar 2-3 handats
- Piazza page will be monitored regularly,
- Office hoars start next week
- Some surveys submitted through canvas recordings accessed through canvas, Zoom lectures and office hours thru canvas
- HW thru Gradescope, but registering for

Gredrsfape is done thru canvas

$$
\begin{aligned}
& \text { CSC } 320 \text { algorithms }\left\{\begin{array}{l}
\text { CPS } 420 \text { more algorithms } \\
\text { CPS } 421 \text { which problems }
\end{array}\right. \\
& \text { cant be solved by: } \\
& \text {-any algorithm } \\
& \text { - probably by any } \\
& \text { "efficient" algorithm } \\
& \text { (sig. polytime algorithm) }
\end{aligned}
$$

First topic: First handout, Self-Referencing, Uncountability, and Uncomputability!

- Review parts of Chapter O, notation on set theory (in Section 4,2 of the texthodl)
- Upslndt: Antimere are more decision problems then algorithms ($C_{\text {program, Jevassenpt, }}$

Turn machine,..-)
Break for 5 minutes

Textbook: Introduction te the Theary of Comporting, by Sipser, $3^{\text {rd }}$ edition
[Really almost the sarre course since early 1980's; a few additional topics. We will skip Ch 2, which is less releunt to us today...]
Some homework from there...

First topic: Handout on Belf-referenaing, uncauntability, and onecmpatability:

- Countably infinite versus uncorantable set von Newman: roughly; "You don't understand maldematics. Yow just get used to it.

For me! "understand" "see sorme exprumples" t" time"
(should give you an idea of what to expect, how much time the course will take for you, etc.)

- Application: mare decision problems then algarithmer
- "Russell's" Paradox, other paradoxes, simitar to Cantor's the, need for
thee want to review set theory, and see the difference between - finite sets
- infinite sets

Review "decision problem" and "algorithm"

- Alphabet $=$ finite set, eng. $\Sigma=\{a, b\}$
symbols/lettess $=$ elements of the alphabet
- A word in \sum, an alphabet, of length k, $k=0,1,2, \ldots$, is a sequence of length k of elements of \sum.

$$
\begin{aligned}
& \text { e.s. } \sum=\{1,2,3\} \\
& (1,2,2,1,3) \text { is a ward of length } 5
\end{aligned}
$$

usually write 12213 for $(1,2,2,1,3)$

$$
\begin{aligned}
& \sum^{k}=\{\text { all words of length } k\} \\
& \text { word }=\text { string } \\
& \Sigma^{*}=\sum^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots \\
& \text { es. } \sum=\{a, b\}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma^{\prime}=\{a, b\} \quad(\text { reall } \quad\{(a),(b)\}) \\
& \Sigma^{2}=\{a a, a b, b a, b b\} \quad(\text { reall }\{(a, a), \ldots\}) \\
& \Sigma^{0}=? \text { answer: } \Sigma^{0}=\{\varepsilon\}
\end{aligned}
$$

$\left|\Sigma^{2}\right|$, size of Σ^{2} is $|\Sigma|^{2}$

$$
=(\operatorname{sizc} \text { of } \Sigma)^{2}
$$

$$
\left|\Sigma^{k}\right|=|\Sigma|^{k}
$$

e.g. $\quad \sum=\{a, b\},\left|\Sigma^{3}\right|=2^{3}=8$

$$
\begin{array}{r}
\Sigma^{0}=|\Sigma|^{0}=1-a \text { reasar for } \\
\\
\{\varepsilon\}=\Sigma^{\circ}
\end{array}
$$

Concerenation:
$S_{1} \circ S_{2}=$ write S_{1}, then S_{2}
$(a b a) \circ(a b)=a b a a b$

$$
(\varepsilon) \circ(a b)=a b
$$

Note: \sum alpachault, finite set, then $\sum^{*}=$ "courtable" in the follurn
sense

$$
\begin{aligned}
& \text { e.g. } \sum=\{a, b\} \\
& \Sigma^{*}=\{\varepsilon, a, b, a a, a b, b c, b b, a a a, \ldots\}
\end{aligned}
$$

bijection or
1-1 corressontine $\downarrow \downarrow \downarrow$

$$
\mathbb{N}=\{1,2,3,4, \ldots\}
$$

Next time:
decision problems $\leftrightarrow 1$ languages over \sum are "uncountable"

