Midterm Solutions

CPSC 421/501, Fall 2020

Midterm 1

Problem (1) (5 Marks)

The upper branch decides $a b^{*}$ and the lower branch decides $\left(b^{2}\right)^{*}$.

- q_{0} initial state, allow us to take the union of the two branches using the epsilon jumps.
- q_{a} corresponds to when the letter seen is a.
- $q_{a b^{*}}$ corresponds to when the letters seen are $a b^{*}$.
- $q_{\text {even }}$ we've seen an continuous string of $b s$ with even length (or we've seen no letters at all).
- $q_{o d d}$ we've seen an continuous string of $b s$ with odd length.

Problem (2)

Part 1 (5 Marks): Note the following accepting futures of the language L :
$\operatorname{AccFut}_{L}(\epsilon)=L$
$\operatorname{AccFut}_{L}(a)=L \cup\{b\}$
$\operatorname{AccFut}_{L}(a b)=\{\epsilon\} \cup L$
We note that the language L has at least three distinct accepting futures and therefore by the Myhill-Nerode theorem any DFA that accepts L must have at least three states.

Not needed in the solutions but to show that three is the best lower bound you can say:
$\operatorname{AccFut}_{L}\left((a, b)^{*} a\right)=\operatorname{AccFut}_{L}(a)$
$\operatorname{AccFut}_{L}\left((a, b)^{*} b b\right)=\operatorname{AccFut}_{L}(\epsilon)$
$\operatorname{AccFut}_{L}\left((a, b)^{*} a b\right)=\operatorname{AccFut}_{L}(a b)$
Part 2 (5 Marks): DFA with three states for the language L :

- q_{0} corresponds to when the last letter seen is not a.
- q_{1} corresponds to when the last letter seen is a.
- q_{2} corresponds to when the last two letters seen are ab.

Problem (3) (10 Marks)

Our Turing machine has states $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{a}, q_{r}\right\}$ where q_{0} is the initial state, q_{a} is the accepting state, and q_{r} is the rejecting state. The tape language is $\Gamma=\{a, \sqcup\}$. Then the Turing machine that recognizes L.

States q_{0}, q_{1}, q_{2}, and q_{3} of the Turing machine correspond to the number of a 's having been seen on the tape so far mod 4 being equivalent to $0,1,2$, and 3 respectively. The Turing machine works by reading the string of a 's on the tape until reaching the first blank cell and during this process it cycles through states q_{0}, q_{1}, q_{2}, and q_{3}, keeping track of the value of the number of a 's having been seen on the tape so far mod 4 . When the Turing machine sees the first blank cell it accepts if and only if it is in state q_{2}, otherwise it rejects.

Midterm 2

Problem (1) (5 Marks)
Since $f(c)=\{a, c\}$, then $c \in f(c)$. For the definition of T we have $c \notin T$ precisely because $c \in f(c)$. Therefore, $f(c) \neq T$.

Problem (2)

Part 1 (5 Marks): Note the following accepting futures of the language L :
$\operatorname{AccFut}_{L}(\epsilon)=L$
$\operatorname{AccFut}_{L}(a)=\left\{\epsilon, a^{2}\right\}$
$\operatorname{AccFut}_{L}\left(a^{2}\right)=\{a\}$
$\operatorname{AccFut}_{L}\left(a^{3}\right)=\{\epsilon\}$
$\operatorname{AccFut}_{L}\left(a^{k}\right)=\varnothing$ for $k \geq 4$
We note that the language L has at five distinct accepting futures and therefore by the Myhill-Nerode theorem any DFA that accepts L must have at least five states.

Part 2 (5 Marks): DFA with three states for the language L :

- q_{0} corresponds to when we've seen ϵ.
- q_{1} corresponds to when we've seen a.
- q_{2} corresponds to when we've seen $a a$.
- q_{3} corresponds to when we've seen $a a a$.
- q_{4} corresponds to when we've seen a^{k} for $k \geq 4$.

Problem (3) (10 Marks)
Our Turing machine has states $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{a}, q_{r}\right\}$ where q_{0} is the initial state, q_{a} is the accepting state, and q_{r} is the rejecting state. The tape language is $\Gamma=\{a, b, \sqcup\}$. Then the Turing machine that recognizes L.

Description left out since this question is similar to the first midterm.

