Individual Homework

Problem (1)

Suppose TM H decides HALT_{TM}, that is given input $<M, w>$ (where M is a description of a TM and w is the input to M), H will accept $<M, w>$ if and only if M halts on input w. Otherwise H will reject $<M, w>$.

Define a new TM D with such a procedure:
1 - If the input is not of form $<M>$ (a TM), then reject
2 - Otherwise, Simulate $<M,<M>>$ on H
3 - If H accepts $<M,<M>>$, then loop forever
4 - If H rejects $<M,<M>>$, then accept

Now consider TM D with input $<D>$. We have three cases:

Case 1 - D rejects $<D>$: Then $<D>$ is not a description of a TM, which is a contradiction.

Case 2 - D accepts $<D>$: Then H must reject $<D,<D>>$, which means D does not halt on input $<D>$. Which is a contradiction.

Case 3 - D loops on input $<D>$: Then H must accept $<D,<D>>$, which means D halts on input $<D>$. Which is a contradiction.

In all cases we got a contradiction, therefore our initial assumption was incorrect and HALT_{TM} is undecidable.
Problem (2)

HALT$_M$ is recognizable, for any TM M and input w, simulate running M on w using a universal Turing machine, and accept if M halts.

The complement of HALT$_M$ is not recognizable. Suppose it was recognizable, since we know HALT$_M$ is recognizable, then HALT$_M$ would be decidable which is a contradiction.
Group Homework

Problem (1)

(a)

Suppose L is decided by a TM H. That is given a valid description of a TM, $<M>$, H will accept $<M>$ iff M accepts some input, otherwise H will reject.

Consider TM D which will decide A_{TM}. D has inputs of form $<<M>, w>$ (a TM and its input):

1 - If the input is not of form $<<M>, w>$, then reject
2 - Otherwise, Construct new TM M'_w as such:
 2.1 - If the input to M'_w is not w, then M'_w rejects
 2.2 - Otherwise M'_w will simulate running M with input w.
 (M'_w will accept, reject, or loop on input w if M does the same on w)
3 - Simulate running H with input $<M'_w>$.
4 - If H accepts, accept. Otherwise, reject.
 (Since H is a decider it will not loop)

In the description of D, M'_w is such that the only input it will possibly accept is w. M'_w will accept w iff M accepts w. Since H is a decider, if H accepts $<M'_w>$, then M accepts w. Otherwise M rejects w. This means TM D decides A_{TM}. Which is a contradiction, therefore our initial assumption was incorrect and L is undecidable.
(b)

L is recognizable. For any TM M, the set of inputs of size i are finite since the alphabet of M is finite. Initialize i to 1 and simulate running M with a universal TM on all inputs of size less than i for i steps. If any input is accepted by M in i steps (or less) accept M, otherwise increment i and try again. Assuming that L is not empty, this method will halt and accept M iff $M \in L$.

(c)

No, the complement of L is not recognizable. Similar to problem 2 of the individual section of homework 7, if the complement of L were to be recognizable, then L would be decidable, since L is recognizable. This is a contradiction.
Yes, NP is closed under concatenation. Suppose you have two languages L_1 and L_2 in NP, then there are non-deterministic TMs M_1 and M_2 that decide L_1 and L_2 in polynomial number of steps in the size of their inputs. Let L_3 be \{ $l_1 \circ l_2$ | $l_1 \in L_2, l_2 \in L_2$ \}. Then we can describe a non-deterministic TM M_3 that decides L_3, it cuts the input at all possible locations and checks if the parts are members of L_1 and L_2. More concretely the M_3 works as such:

1 - For all possible cuts to the input w into parts w_1 and w_2 such that $w_1 \circ w_2 = w$ do the following:
 2 - Simulate running M_1 with input w_1
 3 - If M_1 rejects w_1, then reject
 4 - Otherwise, simulate running M_2 with input w_2
 5 - If M_2 accepts w_2, then accept. Otherwise reject.

M_3 only reaches the accepts w state iff there exist w_1 and w_2 such that $w = w_1 \circ w_2$ and $w_1 \in L_1$ and $w_2 \in L_2$, so M_3 decides L_3. There only $|w|$ of these cuts possible and since M_1 and M_2 take NP steps, M_3 takes at most a factor of w more steps, which means L_3 is in NP.
Problem (3)

Yes, NP is closed under intersection. Suppose you have two languages L_1 and L_2 in NP decided by non-deterministic TMs M_1 and M_2. Using a universal non-deterministic TM simulate M_1 on input w. If M_1 rejects, reject. Otherwise simulate M_2 on input w. If M_2 rejects, reject. Otherwise accept. The procedure takes NP steps and decides $L_1 \cap L_2$.

Problem (4)

P is closed under complement. For an language L in P, let M be the deterministic TM that decides it in polynomial time. We construct a TM M' that decides the complement of L in polynomial time:

M' on input w:
1 - Simulate running M with input w
 2 - If M accepts w, then reject
 3 - If M rejects w, then accept

Above we proved that P is closed under complement, since we’ve assumed that P = NP, then NP is also closed under complement. From class we know SAT is in NP, then the complement of SAT is also in NP.