Individual Homework

Problem (1)

Start by making the NFAs for each part of the regular expression.

NFA for aa:

\[
\text{start} \quad q_0 \quad \xrightarrow{a} \quad q_1 \quad \xrightarrow{a} \quad q_2
\]

NFA for $abaa$:

\[
\text{start} \quad q_0 \quad \xrightarrow{a} \quad q_1 \quad \xrightarrow{b} \quad q_2 \quad \xrightarrow{a} \quad q_3 \quad \xrightarrow{a} \quad q_4
\]

NFA for $aaba$:

\[
\text{start} \quad q_0 \quad \xrightarrow{a} \quad q_1 \quad \xrightarrow{a} \quad q_2 \quad \xrightarrow{b} \quad q_3 \quad \xrightarrow{a} \quad q_4
\]
Combine the NFAs and make a new NFA that recognizes $aa \cup abaa \cup aaba$
(same procedure is formalized in 2.a)

To make an NFA that recognises $(aa \cup abaa \cup aaba)^*$ we need to apply the star operation to the previous NFA. This means adding a new start state (which is also an accepting state) and connecting it to the old start state with ϵ. Additionally, we need to connect the accepting states to the new start state with ϵ.
Problem (2)

(a)

Similar to the second step of the solution to question 1, add a new start state q_0 such that q_0 is connected to the start states of M_1 and M_2 through ϵ. This new NFA has $|Q_{M_1}| + |Q_{M_2}| + 1$ states which equals 51. The corresponding DFA would have at most 2^{51} states, as it can have at most states representing all the subsets of $Q_{M_1} \cup Q_{M_2} \cup q_0$.

(b)

We can have a DFA were each state represents which state in M_1 and which state in M_2 is the current state with the same input string (since M_1 and M_2 are DFAs there can only one current state for any given input string).

The DFA will have states $Q_1 \times Q_2$, meaning every state is a pair (q_i, q_j) where $q_i \in Q_1$ and $q_j \in Q_2$. In this new DFA (q_i, q_j) is an accepting state when either q_i or q_j is an accepting state in Q_1 and Q_2 respectively. For this new DFA $\delta(\alpha, (q_i, q_j)) = (q'_i, q'_j)$ iff $\delta_{M_1}(\alpha, q_i) = q'_i$ and $\delta_{M_2}(\alpha, q_j) = q'_j$. This DFA has $|Q_1| \times |Q_2| = 600$ states and decides $L_1 \cup L_2$ as we only end in an accepting state for some input string s iff either s is accepted by M_1 or by M_2.

(c)

For a given input string s, run s on M_1 first, if M_1 accepts, accept s, otherwise run s on M_2, if M_2 accepts, accept s, otherwise reject. This approach takes at most $2l$ steps where l is the length of s.
Group Homework

Problem (1)

Note the following accepting futures of the language L:

\[\text{AccFut}_L(\epsilon) = \{a, b\}^*ab\{a, b\}^* \]
\[\text{AccFut}_L(a) = b \cup \{a, b\}^*ab\{a, b\}^* \]
\[\text{AccFut}_L(ab) = \{a, b\}^* \]

We note that the language L has at least three distinct accepting futures and therefore by the Myhill-Nerode theorem any DFA that accepts L must have at least three states.

Problem (2)

(a)

Below is a NFA that recognizes $\{0, 1\}^*1\{0, 1\}^3$.

A high level description of the DFA is that q_0 is the state corresponding to seeing arbitrarily many zeros and ones, or simply $\{0, 1\}^*$. Then transitioning to state q_1 corresponds to seeing a 1 which happens to be the fourth last element of the input string, and then states q_2, q_3, and q_4 count down to make sure that the element that caused the transition from state q_0 to q_1 is in fact the fourth last element of the string.

(b)
In part (a) we gave a five state NFA that recognizes \(\{0,1\}^*1\{0,1\}^3 \), where states \(q_2, q_3, \) and \(q_4 \) count the number of remaining elements in order to ensure that the 1 that triggered the transition from \(q_0 \) to \(q_1 \) is in fact the fourth last element of the string. If \(k = 0 \) then we simply have a two state NFA, taking the NFA in part (a) and using only states \(q_0 \) and \(q_1 \) and making \(q_1 \) the only accepting state. If \(k \geq 1 \) then we take the aforementioned two-state NFA and add states \(q_2, \ldots, q_{k+1} \) to the NFA with a deterministic transition for each \(i \in \{1, \ldots, k\} \) from \(q_i \) to \(q_{i+1} \) upon seeing a character in \(\{0,1\} \).

These states \(q_2, \ldots, q_{k+1} \) ensure that the 1 that triggered the transition from \(q_0 \) to \(q_1 \) is in fact the \(k+1 \) last element of the string. We finally make \(q_{k+1} \) the only accepting state of the NFA.

Problem (3)

(a)

We list the accepting futures of 00, 01, 10, and 11:

\[
\begin{align*}
\text{AccFut}_L(00) &= \{0,1\}^*1\{0,1\}^1 \\
\text{AccFut}_L(01) &= \{0,1\}^1 \cup \{0,1\}^*1\{0,1\}^1 \\
\text{AccFut}_L(10) &= \epsilon \cup \{0,1\}^*1\{0,1\}^1 \\
\text{AccFut}_L(11) &= \epsilon \cup \{0,1\}^1 \cup \{0,1\}^*1\{0,1\}^1
\end{align*}
\]

We note that the language \(L \) has at least four distinct accepting futures and therefore by the Myhill-Nerode theorem any DFA that accepts \(L \) must have at least four states.

Next, we show that any other accepting future for \(L \) must be equivalent to one of the four accepting futures listed above. We note that \(\text{AccFut}_L(\epsilon) = \text{AccFut}_L(0) = \{0,1\}^*1\{0,1\}^1 \), which is equivalent to the accepting future of 00. Similarly, \(\text{AccFut}_L(1) = \{0,1\}^1 \cup \{0,1\}^*1\{0,1\}^1 \), which is equivalent to the accepting future of 01.

As for an arbitrary string \(s \in \{0,1\}^* \) where the length of \(s \) is at least three, the accepting future of \(s \) depends only on the last two elements of \(s \) and \(\text{AccFut}_L(s) \) is equivalent to one of the accepting futures of 00, 01, 10, and 11. Therefore, the language \(L \) has exactly four distinct accepting futures and so by the Myhill-Nerode theorem there exists a DFA with four states that
recognizes \(L \). Hence, the minimum number of states for a DFA to recognize \(L \) is four.

(b)

Below is a DFA with four states that recognizes \(L \).

\[q_0 \quad q_1 \quad q_2 \quad q_3 \]

\[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1 \\
& & 1
\end{array} \]

- \(q_0 \) corresponds to the accepting futures of the strings \(\epsilon, 0 \), and those for which the last two elements are 00.
- \(q_1 \) corresponds to the accepting futures of the strings 1 and those for which the last two elements are 01.
- \(q_2 \) corresponds to the accepting futures of the strings for which the last two elements are 11.
- \(q_2 \) corresponds to the accepting futures of the strings for which the last two elements are 10.

(c)

We claim that the a DFA with minimal states that recognizes \(\{0, 1\}^1 \{0, 1\}^k \) has \(1 + \sum_{i=0}^{k} 2^i \) states. We can construct such a DFA by starting with an initial state \(q_0 \) and transitioning to a state \(q_1 \) if we see a 1, otherwise if we see a 0 then we remain at state \(q_0 \). Using \(q_1 \) as a root we create a binary tree of
states of depth $k + 1$, where the depth includes the root q_1, and we transition down the binary tree, going to the right sub-node if we see a 1 and to the left sub-node if we see a zero. The leaves of this binary tree are the accepting states corresponding to all combinations of the last $k + 1$ elements such that the $k + 1$ last element is a 1. Omitting much of the details, we can create appropriate transitions back up the binary tree and to q_0 accordingly from the leaves. The non-leaf nodes of this binary tree correspond to accepting futures of the various classes of strings for which the $k + 1$ last element is not a 1. This binary tree has $\sum_{i=0}^{k} 2^i$ nodes, including q_1.