GROUP HOMEWORK 8, CPSC 421/501, FALL 2020

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(1) Show that any Boolean function $f=f\left(x_{1}, \ldots, x_{n}\right)$ on Boolean variables x_{1}, \ldots, x_{n} can be written as:
(a) a DNF formula $c_{1} \vee \ldots \vee c_{s}$ where $s \leq 2^{n}$ and each c_{i} is the AND of n literals;
(b) a CNF formula $c_{1} \wedge \ldots \wedge c_{s}$ where $s \leq 2^{n}$ and each c_{i} is the OR of n literals.
[Hint: once you do the first part, you can do the second part by considering a DNF for $\neg f$.]
(2) Show that 3COLOUR is NP-complete, using the hints in the textbook for Problem 7.29.
(3) Assume that 3COLOUR is NP-complete. Show that 4COLOUR is NPcomplete (where 4COLOUR is the set of descriptions of graphs that are colourable with 4 colours).
(4) Let 4SAT be the descriptions of Boolean formulas in 4CNF that are satisfiable (a 4CNF is the AND of clauses, each of which is the OR of 4 literals). Show that 4SAT is NP-complete.
(5) If L_{1} can be reduced to L_{2} in time $O\left(n^{3}\right)$, and L_{2} can be reduced to L_{3} in time $O\left(n^{5}\right)$, what can you say about the time that it takes to reduce L_{1} to L_{3} ? Explain. [Hint: the answer is $O\left(n^{15}\right)$, not generally smaller.]

[^0]Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

