(1) Let
\[L = \{ \langle M \rangle \mid M \text{ is a Turning machine that accepts at least one of its inputs} \} \].

(a) Use the fact that \(A_{TM} \) is undecidable to prove that \(L \) is undecidable: assume that \(L \) is decidable by some (Turing machine) algorithm, and explain how you can use this algorithm as a subroutine to decide \(A_{TM} \). [On 10.22 we proved that \(HALT_{TM} \) was undecidable by a similar method.]

(b) Is \(L \) recognizable? Explain.

(c) Is the complement of \(L \) recognizable? Explain.

(2) Is NP is closed under concatenation? Explain.

(3) Is NP closed under intersection? Explain.

(4) Show that if \(P = NP \), then the complement of SAT lies in NP. [As of today, we do not know whether or not the complement of SAT lies in NP.]