GROUP HOMEWORK 4, CPSC 421/501, FALL 2020

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You must justify all answers; no credit is given for a correct answer without justification.
- (2) Proofs should be written out formally.
- (3) Homework that is difficult to read may not be graded.
- (4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
- (1) Let L be the language of strings that contain ab as a substring. Use the Myhill-Nerode theorem to show that any DFA accepting L has at least 3 states.
- (2) (a) Let L be the language described by the regular expression $(0 \cup 1)^* 1(0 \cup 1)^3$, i.e., the words of length at least 4 whose 4th last symbol is 1. Write an NFA with 5 states that recognizes L.
 - (b) Generalize part (a) to the language $(0 \cup 1)^* 1 (0 \cup 1)^k$ for any $k \in \mathbb{N}$.
- (3) (a) Let L be the language described by the regular expression $(0 \cup 1)^* 1(0 \cup 1)^1$, i.e., the words of length at least 2 whose 2nd last symbol is 1. Use the Myhill-Nerode to find minimum number of states needed in a DFA that recognizes L. [Hint: Show that AccFut_L(u) for u = 00, 01, 10, 11 are all different. Are there any other possible values for AccFut_L(u) with u of length 3 or greater? What about for u of length 0 or 1?]
 - (b) Give a DFA that recognizes L with fewest possible states, and explain how your DFA works.
 - (c) Generalize parts (a,b) to the language $(0 \cup 1)^* 1 (0 \cup 1)^k$ for any $k \in \mathbb{N}$.

Research supported in part by an NSERC grant.

The following is a bonus question, worth an additional 10 points out of 100.

(4) Let L be a regular language over an alphabet Σ , and let L' be any language (not necessarily regular) over Σ . It the language

 $L'' = \{ w \in \Sigma^* \mid \text{for some } w' \in L' \text{ we have } ww' \in L \}$

necessarily regular? [Hint: One way to do this is to write $AccFut_{L''}(u)$ in terms of certain values of $AccFut_L$.]

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca URL: http://www.cs.ubc.ca/~jf