INDIVIDUAL HOMEWORK 1, CPSC 421/501, FALL 2020

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:

- (1) You must justify all answers; no credit is given for a correct answer without justification.
- (2) Proofs should be written out formally.
- (3) Homework that is difficult to read may not be graded.
- (4) You may work together on homework in groups of up to four, **but you must write up your own solutions individually and must acknowledge with whom you worked.** You must also acknowledge any sources you have used beyond the textbook and two articles on the class website.

At the end of this document there are a few sample problem with solution.

- (1) Which of the following maps are injections (i.e., one-to-one), which are surjections (i.e., onto), and which are both (i.e., bijections or one-to-one correspondences)? Justify your answer.
 - (a) f: N → N given by f(x) = x + 9.
 (b) f: Z → Z given by f(x) = x + 9.
- (2) If $f: S \to T$ and $g: T \to U$ are both injective (i.e., one-to-one), is $g \circ f$ (which is a map $S \to U$) necessarily injective? Justify your answer.

Research supported in part by an NSERC grant.

Bonus Question, Worth an Extra 10 out of 100 Points for Homework 1

[Solutions to this problem will not be released. Bonus questions tend to be more difficult than the usual course material and will not appear on any exam.]

(3) (Cancellation Property)

- **Left Cancellation:** We say that a map (of sets) $f: S \to T$ has the *left cancellation property* if for any two maps g, h from a set $U \to S$ we have fg = fh (i.e., the map $f \circ g: U \to T$ equals the map $f \circ h$) implies that g = h. Show that this property holds of f iff f is injective.
- **Right Cancellation:** Formulate a similar right cancellation property for a map $f: S \to T$ and show that it is equivalent to f being surjective.

Sample Exercises With Solutions:

People often ask me how much detail they need in giving explanations for the homework exercises. Here are some examples. The material in brackets [like this] is optional.

Sample Question Needing a Proof: If $f: S \to T$ and $g: T \to U$ are surjective (i.e., onto) is $g \circ f$ (a map $S \to U$) is necessarily surjective? Justify your answer.

Answer: Yes.

[To show that $g \circ f$ is surjective, we must show that if $u \in U$, then there is an $s \in S$ such that $(g \circ f)(s) = u$.]

If $u \in U$, then since g is surjective there is a $t \in T$ such that g(t) = u. Since f is surjective, there is an $s \in S$ such that f(s) = t. Hence

$$(g \circ f)(s) = g(f(s)) = g(t) = u.$$

Therefore each $u \in U$ is $g \circ f$ applied to some element of S, and so $g \circ f$ is surjective.

Sample Question Needing a Counterexample: If $f: S \to T$ is injective, and $g: T \to U$ is surjective, is $g \circ f$ is necessarily injective? Justify your answer.

Answer: No.

[To show that $g \circ f$ is not necessarily injective, we must find one example of such an f and g where $g \circ f$ is not injective.]

Let $S = T = \{a, b\}$ and $U = \{c\}$; let $f : S \to T$ be the identity map (i.e., f(a) = a and f(b) = b), and let $g : T \to U$ (there is only one possible g in this case) be given by g(a) = g(b) = c.

Then f is injective (since $f(a) \neq f(b)$) and g is surjective, since $U = \{c\}$ and c = g(a)). However $g \circ f$ is not injective, since $(g \circ f)(a) = c = (g \circ f)(b)$.

Injectivity and Surjectivity of a Given Map: If $f: \mathbb{N} \to \mathbb{N}$ is given by f(n) = 2n + 5, is f injective? Is f surjective?

Answer: f is injective, because if $f(n_1) = f(n_2)$, then $2n_1 + 5 = 2n_2 + 5$ and therefore $n_1 = n_2$.

[Hence f maps distinct values of \mathbb{N} to distinct values of \mathbb{N} , i.e., $n_1 \neq n_2$ implies that $f(n_1) \neq f(n_2)$.]

f is not surjective, because there is no value $n \in \mathbb{N}$ such that f(n) = 1: if such an n existed, then 2n + 5 = 1 and so n = -2 which is not an element of \mathbb{N} .

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf