There is a standard way to produce an languages that are complete for NP and PSPACE (under polynomial time reductions). Let us start with the NP-complete language.

Let

$$NP\text{-SNEAKY} = \{\langle M, w, 1^t \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ within time } t \}.$$

We claim that NP-SNEAKY is NP-complete. To prove this we need to show that

(1) NP-SNEAKY lies in NP, and
(2) any $$L \in \text{NP}$$ can be reduced in polynomial time to NP-SNEAKY.

Claim (2) is almost immediate, and claim (1) requires a bit more thought: you run a (non-deterministic) universal Turing machine for $$t$$ steps of $$M$$ on input $$w$$, and you have to verify that the simulation runs in time polynomial of

$$\langle M \rangle + \langle w \rangle + t.$$

This is easy (since the input size is at least $$t$$), and was done in class. You should be aware that the simulation will not run in time in in time polynomial of

$$\langle M \rangle + \langle w \rangle + \log_2 t.$$

For this reason the language

$$NP\text{-FAIL} = \{\langle M, w, t \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ within time } t \}$$

will fail to be in NP, when you describe $$t$$ in base 10 or binary, as one is accustomed to doing.

You might compare this to showing that SAT is NP-complete: showing that SAT is in NP is easy, but showing that any language in NP can be reduced to SAT is the essence of the Cook-Levin theorem, and is much more elaborate. For NP-SNEAKY both steps in showing NP-completeness are easy, but the first step—which requires a universal Turning machine—is more difficult than the second.
Another comparison between NP-SNEAKY and SAT (and 3COLOR, VERTEX-EXPANSION, PARTITION, etc.) is that the latter problems are interesting in applications, whereas NP-SNEAKY is just a formal construction that doesn’t seem to have applications beyond giving a language with a simple proof of NP-completeness.

Similar remarks hold for the language:

\[
\text{PSPACE-SNEAKY} = \left\{ \langle M, w, 1^s \rangle \mid M \text{ is a non-deterministic T.m. that accepts } w \text{ using at most space } s \right\},
\]

which we easily show is complete for PSPACE under polynomial time reductions, i.e., (1) PSPACE-SNEAKY lies in PSPACE, and (2) if \(L \) lies in PSPACE, then there is a polynomial time reduction of \(L \) to PSPACE-SNEAKY.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf