
THE MYHILL-NERODE THEOREM (AND LINEAR ALGEBRA

TESTS)

JOEL FRIEDMAN

Contents

1. The Myhill-Nerode Theorem: Part 1 2
2. The Myhill-Nerode Theorem: Part 2 3
3. Derived Results 5
Appendix A. Consequences of Linear Algebra 5

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

There are a number of ways to see if a language, L, over an alphabet, Σ is regular
and, if so, what is the smallest number of states that a DFA recognizing L can have.
Roughly speaking, we know of four basic techniques:

(1) the Myhill-Nerode Theorem;
(2) consequences of linear algebra, applied to the adjacency matrix of a DFA;
(3) the Pumping Lemma;
(4) derived results: if L,L′ are languages and you know that L is regular and

L∩L′ is nonregular (or L∪L′ is nonregular), then L′ must be nonregular.

This year in CPSC 421, we focus on (1) and (4) above, and omit the Pumping
Lemma.

The Pumping Lemma is by far the most awkward technique to use; its advan-
tage is that there is an analogous pumping lemma for context-free languages. [In
CPSC 421 this year we are skipping over the chapter on context-free languages, so
we have little motivation to cover the pumping lemma.] Another advantage of the
Pumping Lemma is that it is easy to prove “from scratch,” but the same is true of
the Myhill-Nerode theorem (and the proofs of both theorems are similar).

This article focuses on the Myhill-Nerode theorem; this theorem is stronger than
the Pumping Lemma, in that any result of the Pumping Lemma can be proven
(usually more simply and directly) using the Myhill-Nerode theorem. Furthermore,
the Myhill-Nerode theorem allows you to build (at least in principle) the DFA with
the smallest number of states that recognizes a given regular language.

Research supported in part by an NSERC grant.

1



2 JOEL FRIEDMAN

In an appedix to this article, we will briefly explain some consequences of linear
algebra. Of the above three techniques, they are the easiest to use. Their disad-
vantages are (1) they don’t always give good results on many common examples
of non-regular languages, and (2) to prove that these techniques work, we require
some theorems in linear algebra.

1. The Myhill-Nerode Theorem: Part 1

Definition 1.1. If L is a language over an alphabet Σ, and s ∈ Σ∗, we define the
accepting futures of s in L to be

AcceptingFutureL(s)
def
= {s′ ∈ Σ∗ | ss′ ∈ L}.

We will also use the abbreviation AccFut.

Example 1.2. Let Σ = {0, 1, . . . , 9}, and

L = DIV-BY-2 = {0, 2, 4, 6, 8, 10, 12, . . .}.

In class we gave a 5 state DFA that recognizes this language. We have

AccFutL(ε) = L = {0, 2, 4, 6, 8, 10, . . .}
AccFutL(0) = {ε}

AccFutL(00) = ∅
AccFutL(1) = Σ∗(0, 2, 4, 6, 8)

AccFutL(2) = {ε} ∪ Σ∗(0, 2, 4, 6, 8)

Note that we have

AccFutL(2) = AccFutL(4) = AccFutL(2238) = · · · ,

so many strings have the same accepting future with respect to L.

In class we similarly gave 6 different strings with different accepting futures for
the language DIV-BY-3. We also explained why if DIV-BY-3 has 6 different ac-
cepting futures, then any DFA recognizing DIV-BY-3 must have at least 6 different
states. More generally we have the following observation.

Proposition 1.3. If a language, L, over an alphabet, Σ, has at least n distinct
accepting futures (i.e., n distinct values of AccFutL(s) with s ∈ Σ∗), then any DFA
recognizing L has at least n states.

Proof. If s, s′ ∈ Σ∗ are taken to the same state in a DFA, then for any t ∈ Σ∗, st
lands in an accepting state of the DFA iff s′t does. Hence if

AccFutL(s1), . . . ,AccFutL(sn)

are distinct, then a DFA recognizing L must take s1, . . . , sn to distinct states. �

Example 1.4. Let Σ = {0, 1} and

L = {0n1n | n ∈ N} = {01, 0011, 000111, 0414, . . .}



THE MYHILL-NERODE THEOREM (AND LINEAR ALGEBRA TESTS) 3

we have

AccFutL(0) = {1, 011, 00111, . . .}
AccFutL(00) = {11, 0111, 001111, . . .}

AccFutL(000) = {111, 01111, . . .}

and, more generally, AccFutL(0k) has a unique shortest string, namely 1k. Hence
AccFutL(0k) for k ∈ N are all distinct, and so L is not regular.

2. The Myhill-Nerode Theorem: Part 2

The second part of the Myhill-Nerode is a converse to the proposition in the last
section.

Theorem 2.1. Let L be a language over an alphabet Σ, and assume that there is
a finite number, n, of distinct values of

AccFutL(s)

as s varies over Σ∗. Then there exists a DFA with n states that recognizes L.

Actually, much more is true in the above theorem: one can actually build the
DFA, and to do so one does not need to describe all of AccFutL(s) for strings, s—
rather, one needs only to be able to tell for s, s′ ∈ Σ∗ whether or not AccFutL(s)
equals AccFutL(s).

To prove the theorem we consider the languages:

(1) AccFutL(ε);
(2) AccFutL(a), AccFutL(b);
(3) AccFutL(aa), AccFutL(ab), AccFutL(ba), AccFutL(bb);
(4) etc.

Each time we see a new language, i.e., a new value of AccFutL(s), we introduce a
new state; the transition rule δ : Q× Σ→ Q is given by

δ(AccFutL(s), σ) = AccFutL(sσ)

(where we identify a value of AccFutL(s) with its corresponding state). It is much
easier to understand the theorem and its proof from an example.

Example 2.2. Let Σ = {a, b} and

L = {s ∈ Σ∗ | s contains ab as a substring}.
We begin by computing

AccFutL(ε) = L,

which we associate with a state q0 and to the string ε; we then comptue

(1) AccFutL(a) = bΣ∗ ∪ L, AccFutL(b) = L,

which gives us a new state, q1 associated to bΣ∗ ∪ L and associate to the input
string a; we do not introduce a new state for b, since we have already seen the
language AccFutL(b) = L associated to q0 and ε.

At this point:

(1) We have determined two states, q0, q1, of our DFA;
(2) q0 is the initial state of the DFA, since the initial state is the state you

reach on input ε;



4 JOEL FRIEDMAN

(3) from q0, associated to ε, based on (1) we have the transition rules

(2) δ(q0, a) = q1, δ(q0, b) = q0.

As a next step we want to determine δ(q1, σ) for σ = a, b. We compute that

AccFutL(aa) = bΣ∗ ∪ L, AccFutL(ab) = Σ∗;

since we have already encountered bΣ∗ ∪ L but not Σ∗, we introduce a new state
q2 associated to ab and to Σ∗, and declare

(3) δ(q1, a) = q1, δ(q1, b) = q2.

Next we want to determine δ(q2, σ) for σ = a, b. We compute that

AccFutL(aba) = Σ∗, AccFutL(abb) = Σ∗;

since we have already seen Σ∗, which is associated to q2, we declare

(4) δ(q2, a) = q2, δ(q2, b) = q2.

At this point we have determined δ(q, σ) for all σ = a, b and all states, i.e.,
q0, q1, q2, without introducing new states. Hence Q = {q0, q1, q2}, and δ is given by
(2)–(4) above.

Finally, since

ε /∈ L, ε /∈ bΣ∗ ∪ L, ε ∈ Σ∗,

the state q2 is an accepting (or final) state, and q0, q1 are not. (The general principle
here is that ε ∈ AccFutL(s) iff s ∈ L.) This determines the DFA.

Abstractly, the reason why the above construction works is that if

AccFutL(s) = AccFutL(s′)

for some s, s′, then for any σ ∈ Σ we have

AccFutL(sσ) = AccFutL(s′σ).

In the above example we have

AccFutL(a) = AccFutL(aa),

and this implies that for σ = a, b we have

AccFutL(aσ) = AccFutL(aaσ);

hence the transition from the state of aa to that of aaσ is the same as of that from
a to aσ.

Notice that in the above construction we don’t need to determine all of
AccFutL(s) for strings, s ∈ Σ∗; it suffices to know for certain s, s′ ∈ Σ∗ whether or
not AccFutL(s) and AccFutL(s′) are equal.



THE MYHILL-NERODE THEOREM (AND LINEAR ALGEBRA TESTS) 5

3. Derived Results

Once we prove that certain langauges are not regular, we can infer that other
languages are not regular. Here is one such examples of a “derived result.”

Above we have proven that L = {0n1n | n ∈ N} is not regular; this is also
done in the textbook by Sipser (and similar textbooks) using the Pumping Lemma.
Consider the language

L′ =
{
s ∈ {0, 1}∗ | s has the same number of 0’s and 1’s

}
.

Then L′ is not regular, for if L′ were regular then

L′ ∩ 0∗1∗

would also be regular, which is impossible since L = L′ ∩ 0∗1∗.
Note that the Myhill-Nerode theorem gives a more direct proof that L′ is not

regular: for any k ∈ N, FutAccL′(0k) has a unique shortest length string, which is
1k; hence the languages FutAccL′(0k) are distinct for k ∈ N, and so the Myhill-
Nerode theorem implies that L′ is not regular.

In the the appendix we will also explain how to use linear algebra tests to show
that L′ is not regular.

Appendix A. Consequences of Linear Algebra

The following matertial is not required in CPSC 421 this year.
If L is a language over an alphabet Σ, we set

CountL(k)
def
=
∣∣L ∩ Σk

∣∣,
which counts how many words of length k over Σ lie in L. Theorems in linear
algebra show that CountL(k) must satisfy certain conditions if L is regular and
accepted by a DFA with n states.

For example, if

(5) CountL(k) =
(
C + o(1)

)
10k/k

where C is a positive real number, then facts from linear algebra show that L is
not regular; similarly if 10 above is replaced with any positive real.

As an application, since the number of primes less thanN isN/ logN+o(N) (this
is called the Prime Number Theorem), the language PRIMES of primes written in
base 10 is asymptotically (

C + o(k)
)
10k/k

for some C > 0 (the constant C depends on whether or not leading 0’s are allowed).
It follows that PRIMES is not regular.

Let us briefly describe more general consequences of linear algebra. We call these
consequences “linear algebra tests.”

A DFA with n states has an adjacency matrix, which is an n× n matrix whose
i, j entry counts the number of symbols (in the alphabet, Σ, of the DFA) that take
you from state i to state j in the DFA. It follows a DFA has adjacency matrix, M ,
and recognizes the langauge, L, then

CountL(k)
def
=
∣∣L ∩ Σk

∣∣



6 JOEL FRIEDMAN

is a sum of the 1, j components of Mk over all final states j, were state 1 is the
initial state. The Cayley-Hamilton theorem implies that CountL(k) satisfies an
n-term recurrence equation

(6) CountL(k) = c1CountL(k − 1) + · · ·+ cnCountL(k − n)

for all k ≥ n for fixed integers c1, . . . , cn.
As an application, (6) easily implies that

L =
{
am | m is a perfect square

}
is not regular; it also shows that the language

L =
{
am | m ∈ N, m ≥ 20

}
cannot be recognized by a DFA with 20 states or fewer (which is optimal, since
there is a 21 state DFA for this language).

The “Jordan canonical form” therem implies that for any regular language, L,
there are complex numbers λ1, . . . , λm and polynomials p1, . . . , pm such that for k
sufficiently large we have

CountL(k) =

m∑
i=1

pi(k)λki .

As a consequence, one can show that if

λ = lim
k→∞

CountL(k + 1)

CountL(k)

exists, then there is a polynomial p such that

(7) CountL(k) = p(k)λk(1 + o(1)).

This implies that if
CountL(k) =

(
C + o(k)

)
10k/k

for some C > 0, then L is not regular. So the results regarding (7) generalize those
of (5).

If L = {0n1n | n ∈ N} (which is a favourite example in textbooks of a non-regular
language), then CountL(k) alternates between 0 and 1. You get the same counting
function for the regular language {

02n | n ∈ N
}
.

Hence linear algebra tests can fail to provide optimal bounds on DFA’s and regu-
larity.

One actually gets more information from linear algebra: for example, in (7), λ
must be an algebraic integer, and C must be an algebraic number.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf


	1. The Myhill-Nerode Theorem: Part 1
	2. The Myhill-Nerode Theorem: Part 2
	3. Derived Results
	Appendix A. Consequences of Linear Algebra

