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Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

1. The Main Goal

The point of this article is to introduce some material that is typical of the level
of difficulty of CPSC 421/501.

[The problem with standard introductory textbooks to the Theory of Computa-
tion, including the one we use, is that the more difficult material typically occurs
after the first two weeks. This gives a misleading idea of what is expected of stu-
dents.]

The main technical goal of this article is to review some concepts and notation
in Chapter 0 of the textbook, and to prove that if A is any alphabet, then:

(1) the set of strings over A is countably infinite; and
(2) the set of languages over A is uncountable.
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As a consequence, roughly speaking, there are always problems (i.e., decision prob-
lems) that cannot be solved by algorithms.

A secondary goal is to explain why one has to be careful in set theory when
working with infinite sets, and why it is occasionally important to know some
results in set theory and/or logic.

2. Prerequisites and Textbook

Formally, the prequisite for CPSC 421 is CPSC 221, and CPCS 320 is recom-
mended.

The reference [Sip] is to the course textbook, Introduction to the Theory of
Computation by Michael Sipser, 3rd Edition. In CPSC 421 we assume you are
familiar with the material in Chapter 0. In addition, we assume that you are you
have seen some analysis of algorithms, including big-Oh and little-oh notation (e.g.,
n log2 n+ 3n+ 5 = n log2 n+O(n)).

This article will review some of the material in Chapter 0.

3. Decision Problems, Alphabets, Strings, and Languages

In this section we explain the connection between algorithms, decision problems,
and some of the definitions in Chapter 0 of [Sip]. We also discuss descriptions,
needed starting in Chapter 3 of [Sip].

3.1. Decision Problems and Languages. The term decision problem refers to
the following type of problems:

(1) Given a natural number, n ∈ N, give an algorithm to decide if n is a prime.
(2) Given a natural number, n ∈ N, give an algorithm to decide if n is a perfect

square.
(3) Given a natural number, n ∈ N, give an algorithm to decide if n can be

written as the sum of two prime numbers.
(4) Given sequence of DNA bases, i.e., a string over the alphabet {C,G,A, T},

decide if it contains the string “ACT” as a substring.
(5) Given an ASCII string, i.e., a finite sequence of ASCII characters1, decide

if it contains the string “CPSC 421” as a substring.
(6) Given an ASCII string, decide if it contains the string “vacation” as a

substring.
(7) Given an ASCII string, decide if it is a valid C program.

Roughly speaking, such problems take an input and say “yes” or “no”; the term
decision problem suggests that you are looking for an algorithm2 to correctly say
“yes” or “no” in a finite amount of time.

To make the term decision problem precise, we use the following definitions.

(1) An alphabet is a finite set, and we refer to its elements as symbols.
(2) If A is an alphabet, a string over A is a finite sequence of elements of A;

we use A∗ to denote the set of all finite strings over A.
(3) If A is an alphabet, a language over A is a subset of A∗.

1 ASCII this is an alphabet of 256 letters that includes letters, digits, and common punctuation.
2 The term algorithm means different things depending on the context; in CPSC 421 we will

study examples of this (e.g., a DFA, NFA, deterministic Turing machine, a deterministic Turing

machine with an orale A, etc.
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(People often use letter instead of symbol, and word instead of string.) For example,
with D = {0, 1, . . . , 9}, we use

PRIMES = {s ∈ D∗ | s represents a prime number}

and

SQUARES = {s ∈ D∗ | s represents a perfect square}
Here are examples of elements of PRIMES:

421, 3, 7, 31, 127, 8191, 131071, 524287, 2147483647

where we use the common shorthand for strings:

127 for (1, 2, 7), 131071 for (1, 3, 1, 0, 7, 1), etc.

So PRIMES is a language over the alphabet D; when we say “the decision
problem PRIMES” we refer to this language, but the connotation is that we are
looking for some sort of algorithm to decide whether or not a number is prime.
Here are some examples of strings over D that are not elements of the set PRIMES:

221, 320, 420, 2019.

3.2. Descriptions of Natural Numbers. From our discussion of PRIMES
above, it is not clear if we consider 0127 to be element of PRIMES; we need to
make this more precise. It is reasonable to interpret 0127 as the integer 127 and
to specify that 0127 ∈ PRIMES. However, in [Sip] we will be careful to distinguish
a natural number n ∈ N and

〈n〉 meaning the “description” of n,

i.e., the string that represents n (uniquely, according to some specified convention),
so the natural number 127 has a unique description as the string (1, 2, 7), and
the string (0, 1, 2, 7) is not the description of 127. With this convention, 0127 /∈
PRIMES; this is also reasonable.

[Later in the course we will speak of “the description of a graph” (when studying
graph algorithms), “the description of a Boolean formula” (when studying SAT,
3SAT), “the description of a Turing machine,” etc. In these situtations it will be
clear why the input to an algorithm should be a description of something (as a
string over some fixed alphabet) rather than the thing itself.]

If n = Z with n = 127, the symbol 〈n〉, meaning the “description of n” can refer
to

(1) “1111111,” when 〈n〉 = 〈n〉2 means the “binary representation of n” (a
unique string over the alphabet {0, 1});

(2) “11201,” when 〈n〉 = 〈n〉3 means the “base 3 representation of n” (a unique
string over the alphabet {0, 1, 2});

(3) “one hundred and twenty-seven,” when 〈n〉 = 〈n〉English means the “English
representation of n” (a unique string over the ASCII alphabet, or at least
an alphabet containing the English letters, a comma, a dash, and a space);

(4) “cent vingt-sept,” similarly for French, 〈n〉 = 〈n〉French
(5) “wa’vatlh wejmaH Soch,” similarly for Klingon3, 〈n〉 = 〈n〉Klingon;
(6) and good old “127,” when 〈n〉 = 〈n〉10 means the “decimal representation

of n.”

3 Source: https://en.wikibooks.org/wiki/Klingon/Numbers.

https://en.wikibooks.org/wiki/Klingon/Numbers
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Note that haven’t yet specified whether or not ε, the empty string, is considered
to be an element of PRIMES.

3.3. More on Strings. Chapter 0 of [Sip] uses the following notion:

(1) if A is an alphabet and k ∈ Z≥0 = {0, 1, 2 . . .}, a string of length k over A
is a sequence of k elements of A;

(2) we use Ak to denote the set of all strings of length k over A;
(3) equivalently, a string of length k over A is a map [k] → A where [k] =
{1, . . . , k};

(4) by consequence (or convention) A0 = {ε} where ε, called the empty string,
is the unique map ∅ → A;

(5) a string over A is a string over A of some length k ∈ Z≥0;
(6) therefore A∗ is given as

A∗ =
⋃

k∈Z≥0

Ak = A0 ∪ A1 ∪ A2 ∪ · · ·

(7) strings are sometimes called words in other literature;
(8) a letter or symbol of an alphabet, A, is an element of A.

4. Counting, Power Sets, and Countability

In CPSC 421, for any model of computation that we study (e.g., finite automata,
Turing machines, Python programs), we can easily show that there exist programs
that cannot be solved. The reason is that there are “more” problems than algo-
rithms.

[Unfortunately, this does not identify which problem(s) cannot be solved, it
merely shows that unsolvable problems exist.]

More precisely, we will use Cantor’s theorem to show that the set of languages
over an alphabet is uncountable. This technique uses diagonalization (see Theo-
rem 4.17 and Corollary 4.18 in [Sip]) in a way that looks similar to Russell’s famous
paradox.

4.1. Injections, Surjections, Bijections, and the Size of a Set. Any finite
set, S, has a size, which we denote by |S|. For example,∣∣{a, b, c}∣∣ = 3,

∣∣{X,Y, Z,W}∣∣ = 4.

To say that S is a smaller set than T , if both are finite sets, just means that
|S| < |T |.

When working with infinite sets, the notion of one set being smaller than another
is much more subtle. To compare the “size” of infinite sets one can use the following
notions.

Definition 4.1. Let f : S → T be a map of sets. We say that f is

(1) injective (or one-to-one) if for all s1, s2 ∈ S with s1 6= s2 we have f(s1) 6=
f(s2);

(2) surjective (or onto) if for all t ∈ T there is an s ∈ S with f(s) = t;
(3) bijective (or a one-to-one correspondence) if it is injective and surjective.

You should convince yourself that if S, T are finite sets with |S| < |T |, then there
is no surjective map S → T . See the exercises for related notions.
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Definition 4.2. Let S, T be two sets. We say that S is the same size as T if there
is a bijection S → T (this is Definition 4.12 on page 203 of [Sip]). We say that S is
smaller than T if there is no surjective map f : S → T .

Example 4.3. Chapter 0 of [Sip] uses N to denote the natural numbers

N = {1, 2, 3, . . .}.

The natural numbers is strict subset of the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}.
However, N and Z have the same size, since f : N→ Z can be give as

f(1) = 0, f(2) = 1, f(3) = −1, f(4) = 2, f(5) = −2, . . . ,

in other words, f(1) = 0 and for k ∈ N, f(2k) = k and f(2k + 1) = −k.

4.2. Countable Sets.

Definition 4.4. We say that an infinite set, S, is countably infinite if there is a
bijection N→ S, i.e., if S is the same size as N. We say that a set is countable if it
is finite or countably infinite. We say that a set is uncountable if it is not countable.

Example 4.5. Of course, N is a countable; since Z is of the same size as N (proven
above), Z is countably infinite. In class we will explain why the following sets are
also countable:

(1) the positive rational numbers Q (Example 4.15 in [Sip]);
(2) the rational numbers Q;
(3) the set of words over an alphabet A,

A∗ =
⋃
i≥0

Ai

(an alphabet is any nonempty, finite set).

Example 4.6. It is more difficult to prove that a set is uncountable; here are some
examples:

(1) the real numbers R (see Theorem 4.17 in [Sip]);
(2) the set of languages over an alphabet, A, meaning the set of all subsets of

A∗. We will prove this below; it is also proven as Corollary 4.18 of [Sip],
i.e., page 206, although it is not really a “corollary” of the theorem before
it.)

4.3. Cantor’s Theorem.

Definition 4.7. If S is a set, the power set of S, denoted Power(S), is the set of
all subsets of S.

For example, if S is a finite set with n elements, then its power set has 2n (“two
to the power n”) elements.

Theorem 4.8 (Cantor’s Theorem). Any set, S, is smaller than its power set; i.e.,
if f : S → Power(S) is any function, then f is not surjective. Specifically, the set

T = {s ∈ S | s /∈ f(s)}

is not in the image of f .
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Proof. For the sake of contradiction, assume that there is a t ∈ S such that f(t) =
T . Then either (1) t ∈ T , or (2) t /∈ T .

In case (1), i.e., if t ∈ T , then we derive a contradiction: in this case

t ∈ {s ∈ S | s /∈ f(s)},
which implies that t /∈ f(t); but f(t) = T , and so t /∈ T ; but this contradicts the
assumption that t ∈ T .

In case (2), i.e., if t /∈ T , then we similarly derive a contradiction: we have

t /∈ {s ∈ S | s /∈ f(s)},
which implies that t ∈ f(t), and hence t ∈ T , which contradicts the assumption
that t /∈ T . �

In class we will explain why this proof uses diagonalization; the proof that R is
uncountable is one way to illustrate this. (See Section 4.2 of [Sip].)

Corollary 4.9. Let A be an alphabet. Then the set of languages over A is un-
countable. Hence any map from a countable set to the set of decision problems over
A is not surjective.

Proof. The second statement follows from the first and from the definition of un-
countable; so it suffices to prove the first statement.

The set of languages over A equals, by definition, Power(A∗). Let us assume
that Power(A∗) is countable, and derive a contradiction.

The set A∗ is countably infinite, and hence there is a bijection f : A∗ → Z.
If Power(A∗) were countable, there would exist a surjection g : Z → Power(A∗).
Then g ◦ f would give a sujection A∗ → Power(A∗). This is impossible by Cantor’s
theorem. �

Another proof of the corollary above is to use the fact that if f : A → B is a
bijection, then f induces a bijection Power(A)→ Power(B)

4.4. Unsolvable Problems Exist. In [Sip] we will describe many notions of what
is meant by an “algorithms” (e.g., as described by Turing machines, finite automata,
Python programs, C programs, etc.). In most such notions the set of algorithms is
countable; for example, a program in any fixed language (Python, C, etc.) is just
a finite string.

Assuming that each such algorithm solves a decision problem (i.e., at most one
decision problem) over a fixed language, we get a map from algorithms to decision
problems.

It follows that from the above corollary that there exist decision problems, i.e.,
languages over any fixed alphabet, that cannot be solved by any countable set of
algorithms.

5. Russell’s Paradox and Other Subtleties of Set Theory

Working with infinite sets is subtle. The most famous example of this is “Rus-
sell’s Paradox” (likely discovered earlier—but unpublished—by both Cantor and
Zermelo, according to the current Wikipedia page in English): let

R = {S | S is a set that does not contain itself}.
Such a set, R, is problematic: if R is a set, then either either R ∈ R, or R /∈ R, and
either assumption leads to a contradiction.
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For example, if we assume R ∈ R, then R is an element of those sets that do not
contain themselves, so R /∈ R. This contradicts R ∈ R.

A similar contradiction is reached if R /∈ R: then R is not a set that does not
contain itself, hence R ∈ R, which contradicts R /∈ R.

In most forms of set theory, the “collection of all sets” is too large to be a set,
and usually called a class. It follows that R above—or any collection of sets with
some property—is not generally a set. It follows that it can be true that R /∈ R,
provided that R is a class and not a set.

The above paradox shows that certain seemingly natural ways of building sets
require care.

[Of course, this paradox didn’t bring all of modern mathematics to a halt; most
mathematicians assumed that set theorists and logicians would work out a reason-
able fix for the above paradox.]

It is still the case that in the set theories we use these days, certain things are
true:

(1) if S is a set, then Power(S) is a set;
(2) if S, T are sets such that there is an injection S → T , and an injection

T → S, then there is a bijection S → T , i.e., S and T are of the same size;
(3) if S, T are sets such that there is a surjection S → T and an injection

S → T , then S and T are of the same size.

The above statements are clear when S, T are finite sets, but not at all clear when
S, T are infinite.

Example 5.1. It is possible to give sets S, T where it is easy to find an injection
S → T , and an injection T → S, but unclear how to give a bijection from S → T
(when S, T are uncountable). For n ∈ N, let [n]Z be the set of all functions Z→ [n]
(where [n] = {1, 2, . . . , n}). In class we will give a simple bijection [2]Z → [4]Z.
Also, since [2]Z is a subset of [3]Z, we get an injection [2]Z → [3]Z; similarly there
is an injection [3]Z → [4]Z. It follows from (2) above that [2]Z and [3]Z are of the
same size. However, it is considerably more difficult to give a bijection between
these two sets.

6. Some Self-Referencing “Paradoxes” and Theorems

We have seen in Subsection 3.2 that terminology and definitions that seem rea-
sonable, such as our definition of PRIMES, can turn out to be ambiguous and
imprecise. Below we give a number of sentences or phrases that are “paradoxes”
and seemingly lead to logical contradictions. In each of these sentences or phrases,
either:

(1) the “paradox” arises from imprecise or ambiguous language, and the para-
dox goes away once we make things precise;

(2) these statements prove “theorems,” saying that if you can construct such
a phrase (or sentence, or algorithm, etc.), then you obtain a contradiction;

(3) both of the above.

All of the sentences or phrases theorems below involve “self-referencing” combined
with a logical “negation.” Our proof of Cantor’s theorem above is closely related to
these “paradoxes.” One example of such a paradox is Russell’s Paradox discussed
earlier.

(1) I am lying. [Is this statement true or false?]
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(2) This statement is a lie. [Is this statement true or false?]
(3) “the smallest positive integer not defined by an English phrase wth fewer

than fifty words” [If this number equals n, then the above phrase of 15
words desribes n. How can this be?] [This is called the “Berry Paradox,”
although likely due to Russell.]

(4) Leslie writes about (and only about) all those who don’t write about them-
selves. [Does Leslie write about Leslie?]

(5) Let S be “the set of all sets that do not contain themselves.” [This is
Russell’s most famous (and serious) paradox: does S contain itself, i.e., is
S ∈ S? Both assumptions S ∈ S and S /∈ S lead to a contradiction, in a
way that is similar to the proof of Cantor’s theorem.]

(6) This is a statement that does not have a proof that it is true. [If you are
working in a (consistent and complete) logical system that can build such
a statement, then this statement is true but not provably true within your
system4.]

(7) Consider a C program, P , that (1) takes as input a string, i, (2) figures
out if i is the description of a C program that halts on input i, and (3)
(i) if so, P enters an infinite loop, and (ii) otherwise P stops running (i.e.,
halts). [What happens when this program is given input j where j is the
string representing P ?] [This contradiction shows that P cannot exist; but
if the Halting Problem could be decided, then you have a subroutine to
implement step (2), and then you could easily write such a C program, P .]

These statements and algorithms all “refer to themselves,” or can be “applied to
themselves;” they also involve some type of “negation.” Furthermore, the proof of
Cantor’s theorem in Section 4 looks very similar to Russell’s famous paradox.

Consider the first statement, “I am lying,” famously used, of course, by Captain
Kirk and Mr. Spock5 to destroy the leader of an army of robots. This leads to a
paradox: if the speaker is telling the truth, then he is lying (“I am lying”), but if
he is lying, then he is lying that he is lying, meaning he is telling the truth. Either
way we get a contradition.

All the other statements lead to “paradoxes” (of somewhat different types) or
theorems; this will be discussed in class and the exercises. When you get a genuine
paradox, there are a number of ways of dealing with them, such as:

(1) Ignore the paradox. Carry on regardless.
(2) Admit that the paradox is a valid problem in your foundations, but claim

that it doesn’t matter in what you are doing.
(3) Try to resolve the paradox.

We will discuss paradoxes (1)–(7) in class.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

4You can build such statements in systems that, roughly speaking, can express multiplication

over the natural numbers and have a set of axioms that is finite or can be generated by a Turing

machine.
5Thanks to Benjamin Israel for pointing out an earlier inaccuracy.
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