
CIRCUIT COMPLEXITY: ONE POPULAR APPROACH TO P

VERSUS NP

JOEL FRIEDMAN

Contents

1. The “Formula Size Complexity” of a Boolean Function 1
2. Circuit Size Complexity of a Boolean Function 2
3. The Boolean Functions 3COLOUR 3
4. The Cook-Levin Theorem and Deterministic Turing Machines 3
Exercises 4

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

The standard way of trying to solve P versus NP is indicated in Section 9.3 of
the textbook [Sip]. To understand the idea, let us recall some facts about Boolean
formulas and circuits, and about our proof of the Cook-Levin theorem.

1. The “Formula Size Complexity” of a Boolean Function

If f is a Boolean formula on variables x1, . . . , xn, then the size of f is the number
of variables in the formula, e.g.,

Size
(

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)
)

= 4.

A formula can be viewed as a tree, whose leaves represent literals and whose interior
nodes represent subformulas; for example, the above formula as a tree is: In this
way the root of the tree represents the overall formula, and the leaves of the tree
are the literals, i.e., x1,¬x1, . . . , xn,¬xn.

In a Boolean formula, we can use DeMorgan’s laws to assume that all negations
occur at the leaves, e.g.,

¬
(

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)
)

=
(
¬(x1 ∧ ¬x2)

)
∧
(
¬(¬x1 ∧ x2)

)
= (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2).

Research supported in part by an NSERC grant.

1

2 JOEL FRIEDMAN

x1 ¬x2 ¬x1 x2

∧ ∧

∨

Figure 1. (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) as a tree.

Hence, allowing any literal (i.e., and xi or ¬xi for some i) on the leaves, the size of
a formula is the number of interior nodes plus one, and each interior node is either
the AND or OR of its two children.

By a Boolean function of n variables we mean a map f = f(x1, . . . , xn) from
{T, F}n → {T, F}. By the formula size complexity of f (also called the minimum
formula size of f) we mean the minimum size formula needed to compute f . In-
tuitively this is one measure of how “complex” Boolean function is. Assuming our
formulas only use ¬,∨,∧, we have

x1 ⊕ x2 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

(where ⊕ is the exclusive-or, which in [Sip] is called the parity function of x1, x2);
it is not hard to see that this is the smallest formula that represents x1 ⊕ x2, and
hence

MinFormulaSize(x1 ⊕ x2) = FormulaSizeComplexity(x1 ⊕ x2) = 4.

It is a classic problem in computer science to determine the formula size com-
plexity of various Boolean functions. On the homework we have seen that any
Boolean function on n-variables can be expressed in a Boolean formula of size at
most n2n. The number of Boolean functions on n-variables is the number of maps
{T, F}n → {T, F}, which is 22

n

. One can easily show that most Boolean formulas
on n variables—say over 99% of them—require a formula of size at least 2n/(3n)
for large n, simply by showing that the total number of Boolean formulas of size
2n/(3n) or less is significantly less than 22

n

(below we outline this computation).
Hence average size of a Boolean function on n variables is somewhere between

roughly 2n/n and n2n. As of today, the best lower bound on the formula size for
a reasonably “explicit” Boolean function is roughly n3. Hence there is a huge gap
between the minimum formula size that one can prove for an explicit function (as
of today—a number of interesting advances have occurred recently) and the typical
formula size.

2. Circuit Size Complexity of a Boolean Function

A related concept to a Boolean formula is a Boolean circuit. The idea is ex-
plained on pages 380,381 of [Sip] and illustrated in a number of figures there.
Formally a circuit on n Boolean variables x1, . . . , xn is a sequence of variables
y1, y2, . . . , ym where each yi is built from one or two of the “previous” variables,
x1,¬x1, . . . , xn,¬xn, y1, . . . , yi−1, either as the negation of one previous variable or

CIRCUIT COMPLEXITY: ONE POPULAR APPROACH TO P VERSUS NP 3

the AND or OR of two previous variables. We refer to the y1, . . . , ym as the gates
or interior nodes of the circuit.

A Boolean formula is a special type of Boolean circuit, where each yi can only
be used once by the variables that follow, yi+1, . . . , ym (in a circuit, each yi can be
used any number of times). See Figures 9.23, 9.24, and 9.26 of [Sip] for examples
of circuits; circuits can be viewed as directed acyclic graphs, just as a formula can
be viewed as a tree. By contrast, in Figure 1 above, each interior node is the child
of only one node. We define the size of a circuit to be the number, m (of variables
y1, . . . , ym involved in the computation).

One defines the circuit size complexity of a Boolean function to be the minimum
size of a circuit that expresses a Boolean function. Since each formula gives rise to
a circuit, we have

CircuitSizeComplexity(f) ≤ FormulaSizeComplexity(f)

for any Boolean function, f .
Again, simply by counting the number of circuits there are of size s or less in n

variables, and realizing that the number of Boolean functions of n variables is 22
n

,
we can show that most Boolean functions have complexity at least 2n/(3n).

3. The Boolean Functions 3COLOUR

If m ∈ Z, a graph with vertex set [m] = {1, . . . ,m} can be described by n =(
m
2

)
= m(m−1)/2 Boolean variables, xij , where 1 ≤ i < j ≤ m and xij is true when

the graph contains the edge {i, j}. We can therefore define for any n =
(
m
2

)
the

function f3COL,n = fn(x12, x13, . . . , xm−1m) that is true if the graph represented
by the xij is 3-colourable.

We now explain that if you can prove that

CircuitSizeComplexity(f3COL,n) ≥ nc

for any fixed c ∈ N, then P 6= NP.

4. The Cook-Levin Theorem and Deterministic Turing Machines

The Cook-Levin theorem was proven by taking a triple (M,w,N) where M is
a non-deterministic Turning machine, w ∈ Σ∗ is an input to M , and N ∈ N,
and producing a formula that is satisfiable iff M accepts w in N steps. Here
N is an arbitrary number, but for the Cook-Levin theorem we assume that N is a
polynomial in |w|, since this is the case for languages in NP. Recall that the formula
was based on Boolean variables

xijk = T iff at time i, cell j contains symbol k

yij = T iff at time i, the tape head is over cell j

zis = T iff at time i, the computation is in state s

If the computation takes time N , then i ranges over 0, 1, . . . , N , j ranges over
1, . . . , N + 1, k over the number of tape symbols and s over the number of states.
The number of variables is therefore O(N2). The size of the formula produced was
also O(N2).

(The textbook [Sip] uses slightly different Boolean variables based on the way it
denotes the configuration of a Turing machine.)

4 JOEL FRIEDMAN

Now consider what happens when M is a deterministic Turing machine. In this
case, for each i, the time i variables, i.e., xijk, yij , zis are deterministic functions
of the time i − 1 variables (i.e., of xi−1 jk, yi−1 j , zi−1 s where j, k, s vary over all
possible values). In this way for fixed i, j, k,

xijk = some Boolean function of xi−1 jk, yi−1 j , zi−1 1, . . . , zi−1 |Q|,

and similarly for the yij , zis. Since the Boolean functions to compute the time i
variables in terms of the time i− 1 variables are of a bounded number of variables,
we get a circuit of size O(N2) to compute zNs as a function of the input, which
tells us if M accepts w in N steps.

Hence, for example, if 3COLOUR is computable by an O(nk) time deterministic
algorithm, there are O(n2k) size circuits to compute whether or not a graph on
vertex set [m], with n =

(
m
2

)
, is 3-colourable. In this case, if fn denotes the

Boolean function for 3COLOUR (described in the last subsection), then

CircuitSizeComplexity(fn) = O(n2k),

and, moreover, the circuits above have a “uniform structure” in the way they work.
Hence if you can prove that

CircuitSizeComplexity(fn) ≥ nc

for any fixed c, and n sufficiently large, then you have proven that P 6= NP. On
the other hand, if you can prove that

CircuitSizeComplexity(fn) = O(nc)

for some c, and the circuits you use to compute fn have a sort of “uniform structure”
(we leave this vague), then 3COLOUR ∈ P and hence P = NP. It is conceivable
the above bound holds but that the circuits change “wildly” (this is very vague) for
different values of n, in which case you can’t tell whether or not 3COLOUR ∈ P
(but this bound would still be a fabulous result, and unexpected by most researchers
today).

At present, the only lower bound we know for the circuit size of a “reasonably
explicit” Boolean function on n-variables if of size Cn where C is somewhere be-
tween 4 and 10 (this C tends to slowly increase over the years). Note that it is
clear that any function of n variables that genuinely depends on all its variables
must have size at least n (since yn−1 can only involve at most n− 1 of the literals),
so this lower bound involves only a constant factor (which tends to require a lot
of work) over the trivial lower bound of n (for any function depending on all of its
variables).

Exercises

(1) Consider the number, g(n,m), of circuits of size at most m on n variables,
where x1,¬x1, . . . , xn,¬xn are the inputs to (or literals of) the circuit, and
y1, . . . , ym are the gates (or interior nodes) of the circuit.
(a) For each i, show that there are O(i+n)2 choices for how yi is a function

of the literals and y1, . . . , yi−1.
(b) Argue (very crudely) that

g(n,m) ≤ (Cm2)m = Cmm2m

for some absolute constant C, provided that m ≥ n.

CIRCUIT COMPLEXITY: ONE POPULAR APPROACH TO P VERSUS NP 5

(c) Show that for m = 2n/(3n),

log2(g(n,m)) ≤ 2n(2/3 + o(1))

as n→∞.
(d) Show that g(n, 2n/(3n)) = o(22

n

) as n→∞.

(2) The depth of a formula is the length of the longest path from a leaf (i.e., a
literal) to its root (i.e., which computes the full formula); for example, the
depth of the formula in Figure 1 is 2 (the longest path has three vertices
and two edges, which is a path of length 2). Similarly the depth of a circuit
is the length of the longest path from a literal to the last node (which
computes the result of the circuit). We define the minimum formula depth
(or formula depth complexity) and minimum circuit depth (or circuit depth
complexity) of a Boolean function in the analogous way that we did for
formula/circuit size.
(a) Explain why for any Boolean function, f ,

MinCircuitDepth(f) = MinFormulaDepth(f).

(b) Explain why

MinFormulaDepth(f) ≥ log2

(
MinFormulaSize(f)

)
.

(3) Show that there is a constant C such that

(1) log2

(
MinFormulaSize(f)

)
≤ C MinFormulaDepth(f)

for all Boolean functions, f (i.e., C is independent of the number of variables
in n). Do this in the following steps.
(a) Show that for any binary tree with n leaves, there is (at least one)

interior node with between n/3− 1 and 2n/3 descendants.
(b) Show that if v is any interior node of a tree that represents a formula

f , and if v represents the subformula g, then we may write

f = (g ∧ hF) ∨ (¬g ∧ hT),

where hF is the formula for f where v is given the value F (false) and
the descendants of v are discarded, and similarly for hT .

(c) Conclude from the above two parts that if

D(n)
def
= max{MinFormulaDepth(f) | MinFormulaSize(f) ≤ n},

then

D(n) ≤ max
n/3−1≤k≤2n/3

2
(
D(k) + D(n− k − 1)

)
≤ 4D(2n/3).

(d) Conclude that D(n) ≤ 4(1 + log3/2 n) and (1).

(e) Show that the function f(x) = log(x) + log(n− x) = log(x(n− x)) is
maximized over 0 ≤ x ≤ n at x = n/2. Use this to prove the improved
bound D(n) ≤ 4(1 + log2 n).

6 JOEL FRIEDMAN

(4) We say that a Boolean function f : {T, F}n → {T, F} is monotone if for
any x1, . . . , xn ∈ {T, F} and any i ∈ [n] we have

f(x1, . . . , xi−1, F, xi+1, . . . , xi) = T ⇒ f(x1, . . . , xi−1, T, xi+1, . . . , xi) = T

We say that a formula or circuit is monotone if it involves no negations (only
∧,∨) and only the literals x1, . . . , xn (and not ¬x1, . . . ,¬xn). Show that
any monotone Boolean function can be expressed by a monotone Boolean
formula.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

	1. The ``Formula Size Complexity'' of a Boolean Function
	2. Circuit Size Complexity of a Boolean Function
	3. The Boolean Functions 3COLOUR
	4. The Cook-Levin Theorem and Deterministic Turing Machines
	Exercises

