CPSC 421/501 Nov 19, 2020

- Some mare NP -complete problems
- How to solve P vs. NP (?)
- There are $2^{2^{n}}$ Bodean functions on n-variables
- For n large, less than $\sqrt{2^{2^{n}}}$ can be computed by a circuit of size $2^{n} / 2 n$
- If 3COLOUR P, then 3COLOUR has polynomial size circuits; can we refute the conclusion ???
- Questions abut circuit/formula size/depth of Boolew functions are still wide cen.

Break at room problems:
(1) Show that

$$
\begin{array}{r}
\text { PARTITION }=\left\{\left\langle n_{1}, \ldots, n_{m}\right\rangle \mid\right. \text { for some } \\
\text { IC [m], } \left.\sum_{i \in I} n_{i}=\sum_{i \notin I} n_{i}\right\}
\end{array}
$$

is NP-complete
(2) Show that

$$
\text { VERTEX-EXPANSION }=\{\langle G, a, b\rangle\}
$$

there is a $A \subset \bar{V}_{G}$ with $|A|=a$ and $|\Gamma(A)| \geq b\}$ is NP-complete
(3) Show that CLIQUE $=\{\langle G, k\rangle \mid G$ has a dique of size $k\}$ is NP-complete
(4) Show that every Boolean function on n variables can be computed by a formula of
(a) Size $\leq n 2^{n}$

AND
(b) Depth $\leq \log _{2} n n$

Graph theory terminology:
Let $G=(V, E)$ be an (undireded) graph. Let $A<V$ be a subset.
(1) $\Gamma(A)=$ "neighbours of A "

$$
=\{v \in V \mid v \notin A \text { and some }
$$

edge is incident upon V and same element of $A\}$
(2) A is a clique if any two elements of A are joined by an edge.

