CPSC 421/501 Oct 29
Chapter 7:

- $\operatorname{Big}-O$, the classes $\operatorname{TIME}(t(n))$, NTIME $(t(n))$
- P and $N P$
- Reductions, Poly time functions and

NP -completeness

- Start on Cook-Levin Theorem

Breakat Roam Questions:
(1) Show that
is in NP
(2) Show that no edge is monochromatic
is in NP
(3) Show that

$$
\left.\begin{array}{rl}
\text { SUBSET-SUM }= & \left\{\left\langle x_{1}, \ldots, x_{k}, t\right\rangle\right. \\
\text { sit. } \\
& x_{1, \ldots, x_{k}, t \in \mathbb{N} \text { and }} \text { and } \\
& \text { for same } I \subset\{1, \ldots, k\} \\
& \sum_{i \in I} x_{i}=t
\end{array}\right\}
$$

is in NP-complete
(4) If $f: \sum_{1}^{*} \rightarrow \sum_{2}^{*}$ is poly time computable, and $g: \sum_{2}^{*} \rightarrow \sum_{3}^{*}$ is as well, is

$$
g \circ f: \Sigma_{1}^{*} \rightarrow \Sigma_{3}^{*}
$$

also poly-time computable?

