CPSC 421/501 Oct 15, 2020
$\oint 3.1$ - recognize versus decide
$\oint 3,2$ - k-tape Turing Machines

$$
\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}
$$

- Non-deterministic

$$
\begin{array}{r}
\delta: Q \times \Gamma \rightarrow \operatorname{Power}(Q \times \Gamma \times\{L, R\}) \\
\delta 3.3-\text { Descriptions of }\left\{\begin{array}{l}
- \text { Graphs } \\
- \text { Bodes formulas } \\
\text {-etc. }
\end{array}\right.
\end{array}
$$

Chapter 4:
§4.1: Decidable Problems (examples)
§4.2: Undecidable Problems

- Universal Turing Machines can recognize

$$
A_{T m}, H A L T_{T m}
$$

- But $A_{\text {Tm }}$, HALT $_{\text {Tm }}$ are undecidable.

Breakout Roan Problems:
(1) Give high-level or implementation level of Turing machine to decide:

$$
\begin{aligned}
& \text { PRIMES }=\{2,3,5,7,11,13,17, \ldots\} \\
& \operatorname{TIMEs}=\left\{a \sharp b \# c \left\lvert\, \begin{array}{l}
a, b, c \in\{c, 1\}^{*}, \\
a \cdot b=c \text { as } \\
b a s e 2 \text { numbers }
\end{array}\right.\right\} \\
& \text { COLOR }=\left\{\langle G\rangle \left\lvert\, \begin{array}{c}
G \text { is a graph } \\
\text { that can be 3-colardd }
\end{array}\right.\right\}
\end{aligned}
$$

(2) Give an algorithm (deterministic Turing machine) to recognize

$$
\left\{\langle p\rangle \left\lvert\, \begin{array}{l}
p=p(x, y, z) \text { is a polynomial over } \\
\text { the integers such that } p(a, b, c)=0
\end{array}\right.\right\}
$$

(3) What is a reasonable way to describe (over some frise alphabet):

- a Bodes formula?
- a polynomial $p(x, y)$ of x, y with integer coefficients?
- a DFA?
- a Turing machine?
(4) Is the set of Turing machines countable?
(5) Is the set of Turing machines algorithms" (where you identify two machines that "ron the same algorithm m countable?

Last time: For $\left\{\left.0^{n}\right|^{n} \mid n=1,2, \ldots\right\}$ we built:

