CSC $421 / 501$
Section 1.2 [Sip] NFA's:

- NEA example (with $\delta(q, a)=\phi)$
- The: L recognized by an NFA \Rightarrow

1. Same DFA.

- Cardlary: Regular languages closed under \cap, \cup, complement, 0 ,*

Section 1.3 [Sip] Regular Expressions:

- Def of Regular Expression: any $U, 0, *$ of $\{$ single letter $\},\{\varepsilon\}, \phi$
- The: L describe) by a regular expression $\Leftrightarrow L$ is regular.

Breakout Room Questions:
(1) How many states needed to recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by $a D F A$
(2) How many states needed to recognize $\left\{a^{5}, a^{7}\right\}^{k}$ by an NFA
(3) If an NFA has 1000 states, its corresponding DFA may have roughly 2^{1000} states. Is there a relatively, quick way to see if the NFA accepts a given string?
(4) Give an NFA that
recognizes

$$
\begin{aligned}
L & =\left\{\omega \in\{0,1\}^{*} \left\lvert\, \begin{array}{c}
\text { the } 3 \frac{\text { rd }}{d} \text { to lest symbol } \\
\text { of } w \text { is } 1
\end{array}\right.\right\} \\
& =\{0,1\}^{*} \circ\{1\} \circ\{0,1\}^{2} \\
& =\left\{\sigma_{1} \ldots \sigma_{k} \left\lvert\, \begin{array}{l}
k \geqslant 3, \\
\text { with } \sigma_{1}, \ldots, \sigma_{k} \in\{0,1\} \\
k-2
\end{array}\right.\right\}
\end{aligned}
$$

(5) Give a DFA that recognizes L in question (4)

