Directed graphs $G=(V, E)$ with ... exporentially many vertices??? $\therefore n=$ reasoncble number
algoribhems running in poly(n) time poly(n) space

Might happon .. PSPACE, PTIME
NPSPACE, NPTIME

$$
=
$$

e.g. Turing mochine using $2 n^{5}$ cells (of loss)
\# Cenfigs is $C^{\left(2 n^{5}\right)}$
Tic-tac-tve: 9 cells $\neq{ }^{\text {Hanfigs }} \leq 3^{9}$ $4-4 \times 4: 64$ cells $\quad \ldots \leq 3^{64}$

So sart of drected graph

Videc game

BTW: Wh the hemework:

Assume:
(1) Given $s \in \Lambda^{N}$ string, we check is $s \in V$ in time polynomial n, n some parameter;

$$
N \leq \operatorname{poly}(n)
$$

(2) Given $s_{1}, s_{2} \in V \subset \Lambda^{N}$, we can tell if there is an edge $S_{1} \longrightarrow S_{2}$ (in pdy(h))

Given $S_{\text {init }}, S_{\text {term }} \in V \subset \Omega^{N}$,
write

$$
\leq T \text { steps }
$$

Rearswre alg to see if There $I_{s} P_{\text {acth }}\left(S_{\text {init }}\right.$, Storms $\left.T\right)$:

(1) for call $s \in \mathbb{V} \subset \Lambda^{N} \leftarrow$ gothrus ${ }^{\text {lexicographical }}$ lexicographical are

$$
\left.\begin{array}{c}
s=13719218 \\
13719219
\end{array}\right\}
$$

Recurvaly test:

$$
\begin{aligned}
& 1^{\text {st }} \rightarrow \text { Theredspath }\left(S \text { init }, S, L^{T / 2 J)}\right. \text { and true ar file } \\
& \begin{array}{l}
\text { if true } l l \text { is }\left(5, S_{\text {term, }}, \Gamma T / 2 T\right) \\
\begin{array}{l}
\text { rouse space } \\
\text { and do }
\end{array}
\end{array}
\end{aligned}
$$

SPACE need for Thereat $p_{\text {acth }}\left(\right.$ shit $\left._{\text {s, }}^{\text {Storm, }}, T\right)$: say $f(T)$

$$
S_{\text {hit }} \longrightarrow S \longrightarrow j_{\text {term }}
$$

(1) K remember s and step thru it, space N,
$|A|$ symbols
$T \geq 2$:

$$
f(T)=\operatorname{space} N,|\Lambda| \text { symbols }+ \text { canst }
$$

$$
\begin{aligned}
f(T) & =N+\text { cont }+f(\sqrt{T} / 2) \\
f(T) & \leqslant f\left(F T / 2^{7}\right)+c N \\
& \leqslant f(T / 4)+c N+c N \\
& \leqslant<N \log _{2}(T)+f(1)
\end{aligned}
$$

(time would be $f(T) \leqslant c N \cdot T$)

Next: Want a PSPACE complate problom ($\$ 8.3$)
Gaing to be sneak y.
NP-complete complote kanguege:
The nen-defermintiction 7

(there is am accurdey path)

SAT NP-cunglatr
(1) SATENP easy
|NP SNEAKY
(1) mare difficith
(2) $L \in \mathbb{N} P \Rightarrow L \leqslant p N P$ diffecut
(2) vary eory

