Today.' Savitch's Thearem, Number of Eanfigurations
Tic-Tac-Toe 3×3 !
stert \#

Some small amount of space
t a lot of time

Win in game (asoume pley-rl, parayer 2 alternate)
 $\begin{aligned} & \text { Player } 1 \\ &-\quad\binom{\text { plaper 1 plazer }}{\text { owins }}\end{aligned}$
funtor of the maves that is

2 player game \Leftrightarrow pleyorl wing $\exists \ldots \forall \forall$

$$
\begin{aligned}
\begin{array}{l}
p=p_{\text {lur }} \text { 1 } \\
q=p_{\text {low }} 2
\end{array} & \exists \frac{1}{p_{1}} \forall q_{1} \exists p_{2} \forall q_{2} \exists \ldots \\
& \left(\begin{array}{c}
\text { fundion }\left(p_{1}, q_{1}, p_{2}, q_{2} \ldots\right) \\
\sigma \text { win } p_{1}, \text { er } 1
\end{array}\right.
\end{aligned}
$$

er, $f=f\left(x_{1}, \ldots, x_{n}\right)$
but only depends on $\left.X_{2}, x_{7}, x_{8}, x_{8}\right) \ldots$ ever vars

$$
\begin{aligned}
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4} \ldots \forall x_{n-1} \exists x_{n} \quad f\left(x_{1}, \ldots x_{n}\right)=T \\
& \Leftrightarrow \quad \exists x_{2} x_{4} x_{6} x_{8} \ldots x_{n} \text { sit. } f\left(x_{1}, \ldots, x_{n}\right)=1 \\
& \Leftrightarrow f\left(x_{2}, x_{4}, x_{6}, \ldots x_{n}\right) \in \int A T \\
& \uparrow \rho \jmath
\end{aligned}
$$

Claim: If L is decidable in $2 n 5$ Non -dd Space, then L is decidable in $O\left(n^{10}\right)$ Space. ins.

$$
C\left(f^{2}(n)\right)
$$

$$
\text { PSPACE }=\operatorname{NPSPACG}
$$

Ie.
If you have a determmistic Tim, whet runs in space $2 n^{5}$
$Q=$ states $\rightarrow q_{g}$

step $C=$ tape

Total number of configurations $=\because$
bound (is): \# of states \# Stuff cove tare

$$
|Q| \cdot|\Gamma|^{2 n^{5}} \cdot 2 n^{5}
$$

same constant
Last time: step 1
step some confers
same ceaforg \downarrow

step $\quad \longleftarrow$ confis,

What is T.m, M, that is non-detormirsistic?
Te accept winput, cald we take longer that teonftrgs to accepp?
$\because \quad 4 \quad$ il 11 , do we needtoll 11

So: non-det T.m,
stepl
step
input W

