CSC $421 / 501, \operatorname{Nav} .8$
Now that any LGNP hes $L \angle_{p}$ SAT and

$$
L<{ }_{p} 3 S A T
$$

show that also $L L_{p}$ SUBSET-Sum Justify SAT maybe clio

$$
L \angle_{p} \text { PART ITION }
$$

tricks!

Homework: $\left(x_{i j r}=\right.$ true $)$ and $\left(y_{i j}=\right.$ true $)$ ad $\left(z_{i q}=\right.$ true $)$

Why 3SAT?
SLBSET-SUM:

$$
\left\{E T-S \cup M: \quad\left\{\begin{array}{l}
\text { Is there } I c\{1, \ldots, m\} \\
\text { sit. } \\
\sum_{i \in I} n_{i}=t
\end{array}\right\}\right.
$$

a type of bin packing-like problem
e.g given $\langle 3,5,7,8,12,110,56,72 ; 171\rangle$
if you could got $|\downarrow \downarrow \downharpoonleft \downarrow \downarrow|$ which to toke to sum to 171
(1) SLBSET-SUM $\in N P$ (easy) SUBSET-SUM
(2) $L \in N P, L<{ }_{p}$ SUBSET- SUM (tricky) \int is $N P$ -
b
Proof: 3SAT $<_{\rho}$ SUBSET-SUM
Idea:

$$
f\left(x_{1},-y x_{n}\right) \text { in } 3 C N f
$$

$$
\frac{\operatorname{eig.}\left(x_{1} \text { or } x_{2} \text { on } x_{3}\right) \text { and }\left(\tau x_{1} \text { or } x_{2} \text { ar } \neg x_{3}\right)}{\text { and }}
$$

$$
\begin{aligned}
& n_{1} \text { pick if } x_{1} \text { is } T \\
& n_{2} \cdots \cdots x_{1} \text { is } f \\
& n_{3} \cdots \cdots x_{2} \text { if } T \\
& n_{4} \cdots \cdots x_{2} \text { is } f
\end{aligned}
$$

chosen to sum to the target
Trick! turn $1,2,3$ vs 0 into only che US. O
number

$7 \longleftarrow$ tezel

$3 \leftarrow$ torget

$$
7 \ldots 77 \quad t_{\operatorname{tar} 3 \alpha}
$$

