At last, a Turing machine that does something... (computer a function)

Last time" $L_{1}<\infty<L_{2}$
"The language L_{1} car be reduced in pdytime to L_{2} "
Soy have alphabets, \sum_{1} and \sum_{2}, and languages
L_{1} over Σ_{1} and L_{2} over Σ_{2}.
We secy they $f: \sum_{1}^{d} \rightarrow \sum_{2}^{*}$ cen be computed in poly time if there is a Turing machine, M, that on input $\omega \in \Sigma_{1}{ }^{k}$ runs in poly time, ie. halts after at most $p(|w|)$ time for some poly p, and when M halts ar input w, it writes on same designated tope $f(\omega)$.
upon holing

We say L_{1} con be reduced to L_{2} in poly time write $L_{1}<_{p} L_{2}$ if $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ sit.
(1) f can be computed in poly time
(2) far all $w_{1} \in \sum_{1,}^{*}, w_{1} \in L_{1} \Leftrightarrow f\left(w_{1}\right) \in L_{2}$

Today! (1) Finish: If L_{1} is any language in NP (3CCLOR, PARTICNON, HAM -PATH, -...) then $L_{1}<_{p}$ SAT and $L_{1}<_{p} 3 S A T$
(2) SAT $<_{p}$ SUBSET-SUM $<_{p}$ PARTITION

Fix a non-det Turing machine, M, say M runs in time $\leq 20 n^{6}$.

Now given input to $m \quad \omega=w_{1}-w_{n}, n=|w|$ Intuitively

$$
\text { cell } 1 \text { at step } 2 \text { cell } 2 \text { at Step } 2
$$ $20 n^{6}$

Step 1: Need to be in state qu AND
Tope heed is on call I
AND
On cell i, $i=1,--r^{r}$, symbol w_{i} is writer
AND
At cell $i=n+1, \cdots y^{20} n^{6}$
a L hus te be written
We introduced $\quad X_{i j \gamma}=\left\{\begin{aligned} T \text { if at step } i, \text { cull } j \\ \text { symbol written is } V\end{aligned}\right.$
f otherwise

$$
y_{i j}=\left\{\begin{array}{l}
T \text { if atstepi,tape had } \\
f \text { is ir ell } j,
\end{array}, \quad Z_{i q}=\left\{\begin{array}{l}
T \text { if et step } i \\
\text { we acre in } \\
\text { state }
\end{array}\right.\right.
$$

(1) Writ at fer each $i j j=1, \ldots, 20 n^{6}$ that? poly $x_{\text {if }} r=T$ for exactly ane $\quad r \in \Gamma_{\sigma_{\text {conte }}}^{\text {time }}$
(1), (I') same for y^{\prime} 's, z^{\prime} s
(Step): $z_{1, q_{0}}=T, y_{1,1}=T, x_{1, w_{1}}=T$,

$$
\begin{aligned}
& x_{12 w_{2}}=T, \cdots X_{1 n \omega_{n}^{51}} \\
& x_{1 n+1}=T, \ldots, \quad X_{120 n^{6} u}=T
\end{aligned}
$$

$$
\left(z_{1 q_{0}} \text { or } Z_{1 q_{0}} \text { or } Z_{1 q_{0}}\right)<\underset{\text { like }}{\text { roughly }}
$$

Ster $20 n^{6}$): $z_{z 0 n^{6}, q_{\text {acc }}}=1$
Fer $i=1, \ldots, 20 n^{6}-1$:
Step $i \rightarrow$ Step it) is a legal transition according to m
 if is true, then if is nowhere near you

$$
\begin{aligned}
& z_{i, q}=T \\
& x_{i, j, a}=T \\
& y_{i, j}=T
\end{aligned}
$$

M tells you $\delta\left(q, a^{b_{2}}\right)=$ etc.

Prares: $L_{1} \in N P$, then $L_{1}<_{p}$ 3SNT
Next: 3SAT $<_{p}$ SUB56T-SUM

BNar a $35 A$, i.e. a farmula $f \in 3 C N E$, whint to knew if f is satisfiable...

$$
\left.\begin{array}{r}
\text { SUBSt } T \text {-sum: }\left\{\left\langle n_{1}, \ldots, n_{s}, t\right\rangle \text { s.t. } \sum_{i \in \bar{I}}^{\text {for rome } I} n_{i}\right. \\
-t
\end{array}\right\}
$$

e, g.

$$
3,4,5,7: \quad 3+4=\frac{7}{\sim}: \quad \text { SUBSET-JUM }
$$

$$
\left(x_{1} \text { or } x_{2} \text { or } x_{3}\right) \text { ?? }
$$

ANS
, SUBSET-SUM problem

