Back to Cack-Leorr The:
Same non-determustic situation :
Step 1: given
step $2 \quad \downarrow \downarrow$
step 3 Ul, none

Want to take a non-det T_{1}, M, M, and input w, set $n=|w|=$ length w, assume all passible computation path halt within $n^{5} 5^{5}$ steps. Went to give a
Buclem formula $f=f\left(x_{1}, x_{2}, \ldots, x_{C_{n^{(10}}}\right)$, $C=$ some constant, depentry on M sit.
f is satisfiable \Leftrightarrow accept w.
Eventually! want f, or some variant of it, to be in 3CNf form.

Me \rightarrow children:
(don't de this) and (don't do that). -

$$
\left(\neg x_{2}\right) \text { and }\left(\neg x_{5}\right) \text { and } \quad \text { and }\left(\neg x_{17}\right)
$$

1 CNE

$$
\text { 3CNf } \int_{\left.x_{1} \text { or } x_{2} \text { on } \neg x_{17}\right) \text { and }\left(x_{5} \text { on } 7 x_{6} \text { on } x_{3} \ldots \text { and }()\right.}
$$

Stort:
$\omega_{1}\left|w_{2}\right| \ldots\left|\omega_{n}\right| \Delta|\cup| \omega \mid \ldots$ stepl inpot

$$
\omega^{\prime}=\omega_{1} \ldots w_{n}
$$

step 2

$$
X_{i j \gamma}= \begin{cases}\text { True } & \text { if step } i, \text { cell } j, \text { the symbil } V \text { appers } \\ \text { False otherwise }\end{cases}
$$

$z_{i q}=\left\{\begin{array}{l}T \text { if at step } i \text { we are in secte } q \\ F \text { otherwise }\end{array}\right.$
What is a vialid acceptng ${ }_{n}$ comptation of M or inpot w ?
(vali) on step 1) AND $($ step $1 \rightarrow$ step 2 valid) AND $($ step $2 \rightarrow$ step 3 velid) AND .. AND … AND (sep $n^{5}-1 \simeq$ star n^{5} valid) AND (end in state qacc) part of a 3CNF

$$
z_{n^{5}, q_{\text {acc }}} \text { is true } \Leftrightarrow\left(z_{n^{5}, q_{a c c}} \text { of } z_{n^{5}, q_{\text {acc }}} \text { or } z_{n^{5}, q_{a c l}}\right)
$$

Ren: We went, $z_{1 q}$ ffer $q \in Q$, we want exectly che to be true. Similarly, for eack i, j we want $X_{i j r}$ to have one T, the rest F.

Soy u_{1}, \ldots, u_{20} are Batten variables.
(Exactly one of u_{1}, \ldots, u_{20} is True) \sum_{E}

$$
\Leftrightarrow \quad\left(\neg u_{1} \text { ar } \neg u_{2}\right) \text { AND }\left(\neg u_{1} \text { or } \neg u_{3}\right) \text { AND } \ldots
$$

 At mort one $\mathrm{Cl}_{\text {- }}$ is T

$$
\left(u_{1} \text { ar } u_{2} \circ R U_{3} \circ R U_{4}\right) \quad\left(u_{1} \circ R U_{2} \circ R \underline{\omega}\right) \text { AND }
$$

will be true \longleftrightarrow ($\neg w$ on a_{3} or U_{4})
is satisfiable
Say $u_{1} \Leftrightarrow T$

Secy $u_{1}, u_{2}, u_{3}, u_{4}{ }_{F}$

$$
(F \text { or } f \text { or } W) \text { and }(7 W \text { or } F \text { on } F)
$$

$\operatorname{can} 4$ be $\begin{aligned} & \text { satisfied }\end{aligned}$

We're headd to NPu cempleteness:
Det: We say thet a language L is
NP- amplate if
(1) $L \in N P$, and
(2) If L ' is any langueye NP ($\because 0$
then $L^{\prime}<_{p}$ b
τ
We are toking L^{\prime} that is recogrized by a pdy twe non-det Tusing machire. M,

M, time bound \rightarrow Bodlen formala (e.g. n^{s}), in 3CNf \downarrow ihput w

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{20 x^{10}}\right) \\
& 11 \quad \underset{d}{\text { poly tas }} \\
& f_{m, w, \text { time, }}
\end{aligned}
$$

M accipte w $\Longleftrightarrow t^{-i} f_{m, w, \text { time }}$ is satistiable

