Back to Cook-Levin Thm ! Some non deterministic situation ! stepl: given step 2 $\ell \downarrow \backslash_{J} \downarrow_{J}$ none Step 3 Want to take a non-det Time, My and input w, set n= |w| = length w, assume all possible computation path halt within nE steps. Went to give a Boolean formula f = f(K1, X2, ---, , X Cno) n 40 C= some constant, depending on M s.t. f is satisfiable (A) accept W. Eventually! workit f, or some variant of it, to be in BCNF form. (don't do this) and (don't to that . _ Me -> children (-1 X2) and (-1 X5) and ____ and (-1 X14) CNF) and () and - . . 3 CNF X5 OR X6 OR X2 X or X2 or 7 X17

Start ' Wn LU U LU .--Stepl inpot W21 - -- ω_1 $\omega = \omega_1 \dots \omega_n$ Step 2 5, 5, 5, 54 -.1 step i state True if step i, cell j, the symbol V appears False otherwise \times_{ijr} T if a step i, tape head is at celli Yij otherwise T if et step i we are the state q Zig other wise What is a visition according of M on import W? (vdi) on step () AND (step (-+ step 2 valid) AND (step 2-> otep 3 velid) AND -- AND -- AND (step no -1 ~ step no valid) AND (end in state gace) pertor a 3CNF Zns, qace (=) (Zns ar Zns, qace h Ren: We want, Zig for 2EQ, we want exectly one to be true. Similarly, for each i, j we want Xijy to have one T, the rest F.

Say upper uzon are Boolen verichles. (Exactly one of U1, --, U20 is True) E (-u, cr -uz) AND (-u, on -uz) AND ---AND (u, on 42 on Ugor ... on 4) $(\neg u_j \text{ or } \neg u_j \text{ or } \neg u_j)$ AND 13 16 1 6 20 (U, or Uz or ... or Uzo CHA this can be as a 3CNF () (U, OR UZ OR UZOR UY) (U, OR UZOR W) AND will be true (w on uz or Uy) is satisfiable Say 4,5T (U, on Uz on W) AND (- W on Uz on Uy) with the f FF TFF Say u, uzuz, Uz f (For For w) and (I Work For F) seti stra can't

We're headed to NP' completeness; Dat ! We say that a language L is KP-complete if LENP, and (1)(2) If L'is any language NP then L'< We are taking I that is recognized by a pdy the non-det Turing machine, M, Boden formula in BCNF M, time-band (e.g. ns), ihput W $(\times_1,\ldots,\times_{20\times^{10}})$ poly # 1) M, W, time () (= f , w, in , satisfiable Accipto \mathcal{O}