Today: Cook-Levin Theorem:
If $L \in N P$ (non-dcterminatic poly tirane), then you can solve L in poly time if you have a "button" that solves SAT or 3SAT.

Recall : SAT $=\left\{\langle f\rangle \left\lvert\, \begin{array}{l}f \text { is a Bodes } \\ \text { formula that is satisfiritle }\end{array}\right.\right\}$
e.g.

Boolean formula: eeg. $f=\left(\left(x_{1}\right.\right.$ and $\left.\neg x_{2}\right)$ or $\left.x_{3}\right)$ and $\left(\neg x_{1}\right.$ or....

$$
\langle f\rangle \in \Sigma^{t}, \quad \Sigma=\{(,), X, 0, \ldots, 9, \neg, \text { and or }\}
$$

Pis. $f=x_{171}$ or $\left(\tau x_{133}\right)$

$$
=\langle f\rangle=\underbrace{x 171 \text { or }(7 \times 133)}_{\text {lough } 12} \in \sum^{*}
$$

f is sctisfuable if $f=f\left(x_{1}, \ldots, x_{r}\right)$ and there is an assignment $x_{1} \rightarrow T / f, x_{2} \rightarrow T / t, \ldots, x_{n} \rightarrow T / f$ that makes f true.

For reascas to be mode clear:
f is 3 CNE (3 conjuctuve normal form) if $f=$ blah, and blah $_{2}$ an blah and ... and blake where eco blah; = ($C R \geqslant$ or \geqslant) each 立 is a
variable $x_{1, \ldots}, x_{n}$ or $\neg x_{1, \ldots, \ldots}, x_{n}$.
Ides: SAT, BSAT S NP. Ire if f is a Belem formula, you can "guess" T/E values for its variables "write down non-desminisically" and you can verify whether f holds or not.

Also color $\in N P$,
We claim: SAT, 3 SAT is as difficult a question as there is in $N P$
P vs. NP? \Leftrightarrow Is SAT in P?
For this reason we say that SAT is NP-complete.
LSAT, LSAT, 3 SAT, LSAT
COLOR, 2COLOR $\sum 3$ COIGR, 4 COLOR

Given a newdet Turing machine M, input w, let's simulate if w is accepted (non-det) by M i Tim computctso:

When is the computation possible

$$
y_{i j}= \begin{cases}T & \text { if tue head at time i } \\ \text { is on cell j }\end{cases}
$$

$$
z_{i q}= \begin{cases}1 & \text { if at time } \\ \text { we are in } \\ \text { state } q\end{cases}
$$

Time $n^{5} \Leftrightarrow \5 steps

$$
\begin{aligned}
x_{i j r}: & i-\text { cell nom bor }
\end{aligned} \leq n^{s}, \quad \gamma \in \in_{\text {set }}^{\text {flite }}
$$

\# x variables $\leqslant n^{5} \cdot n^{5} \cdot|\Gamma| \leqslant C n^{16}$
\# y vars, \# z vars \& polynomial in n
Can you reach qace in n^{5} time/steps?
Yes, if at step 1.... formula that express that you shaild

AND \rightarrow :
AND $\longrightarrow\left(\operatorname{step} n^{5}-1 \rightarrow \operatorname{step} n^{5} \quad\right.$ in in \quad i)

$$
\left(\begin{array}{ll}
t_{n^{5}} & q_{a c}
\end{array}\right)
$$

