How to get a quick $\$ 1,000,000 \ldots$
possible

$$
\text { Ch } 7 \text { [Sip]: Solve: }
$$

$$
\text { 3COLOR }=\left\{\langle G\rangle \left\lvert\, \begin{array}{l}
G \text { is graph that can be } \\
\text { 3-coloured }
\end{array}\right.\right\}
$$

ie.

Formally! $G=(v, \epsilon)$, se y G is 3-colourable
if $V \rightarrow\left\{\sum_{i}, \sum_{i}\right\}$ st. each edge has its endpoints coloured differently.

For $\$ 10^{6}$: Either (1) Show that 3 cOLOR can be decided in poly time.
(2) Show that it ccn't be.
$\$ 7.1 \& 7.2$ Formalize this...
Really: 3COLOR, SAT $=\left\{\langle f\rangle\left\{\begin{array}{c}f \text { is a Modem formula } \\ \text { that can be satisfied }\end{array}\right\}\right.$, many more \& if you cen solve of these in poly time, you can solve them all. And... NP to conceptualize these problems.

Formalize: The time that a Turing machine, m, takes on input w is the number of steps to reach $q_{a c c}$ or $q_{r e j}$. We say that M rus in time $f(n)$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ or $\mathbb{P}_{3,0} \rightarrow \mathbb{Z}_{30}$
if on any input ω of length $n=|\omega|$, the Turing machine takes time at most $f(n)$.

$$
f(n) \leqslant C g(n) \text { if } n \geqslant n_{0}
$$

fig. $3 n^{2}-2 n+\log n=O\left(n^{2}\right)$

$$
3 n^{2}-2 n+\log n=P\left(n^{1000}\right)
$$

linear time $\Leftrightarrow O(n)$ time
"quedratir time" $\longleftrightarrow O\left(n^{2}\right)$ time
polynomial time \longleftrightarrow for some $k \in \mathbb{N}, \quad O\left(n^{k}\right)$

$$
\begin{aligned}
P= & \begin{array}{l}
\text { languages decidable in }= \\
\\
\\
\text { polynomial time }
\end{array}=\text { langurefes decidable in } \\
& \text { time o(} \left.h^{k}\right) \text { for some } k \in \mathbb{N}
\end{aligned}
$$

Should be convinced) that a lot of practical algorithms run in poly time... Bot poly time can mean
time $10^{10^{10^{10}}} \cdot n^{2}=C n^{2}, C=10^{100^{10^{10}}}$
$=$

$$
O G\left(n^{2}\right)=\text { oi Member Uh-oh of } n^{2}
$$

$=$
But poly time is a recsonculle class to consider

$$
\begin{aligned}
& O\left(n^{100000}\right) \text { maybe } \leqslant 3 \cdot n^{100000 e} \\
& = \\
& N P=\text { Non-deterministic poly time } \ldots\left\{\begin{array}{c}
\text { why } \\
360 L o R \\
5 A T \\
\vdots
\end{array}\right.
\end{aligned}
$$ are interesting -

Midterm practice:
f for a Turing Machine, or DEA:

$$
\begin{aligned}
& \text { Ism. }=\left(Q, \sum_{1}, \Gamma_{\mu}, q_{c c c}, q_{r e j}, q_{\text {init }}, \Delta, \delta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { at least } \\
& \sum \cup\{\omega\} \\
& = \\
& a^{*} b^{k}, \quad \Sigma=\{a, b\}
\end{aligned}
$$

TM!
aaabbbuTLN

$a \rightarrow a, R$ ccon cbbreviete $a \rightarrow R$

$$
=
$$

Marty 3.3 far us $\langle G\rangle \quad G=$ graph
$\left\langle m_{j(x)\rangle} \quad m=T . m\right.$, wimput

