Recognizable (typically by "simulating" or with a Universal TM.)

but undecidable:

- $\overline{A_{TM}}$, $\overline{Halt_{TM}}$, $\overline{DoWeEnterACertainState_{TM}}$
- Does TM Accept Any Strings At All, Do Two TMs Recognize Different Languages, ...
- Does A TM Halt On Any Input At All

Start Ch 7: Poly Time

Do Two TMs Recognize Differently?

$L_2 = \{ \langle M_1, M_2 \rangle \mid \text{for some input there is a string accepted by both} \}$

Claim: L_2 is undecidable.

$L_2 = \{ s \in \Sigma^* \mid \text{for some input } s = \langle M_1, M_2 \rangle \text{ and } \}$

Imagine (for the sake of contradiction) that L_2 is decidable.

Then I build an algorithm to solve A_{TM} using the algorithm for L_2:

Say given \(\langle M, w \rangle \) and we want to know if \(\langle M, w \rangle \in A_{TM} \), i.e. if \(w \) is accepted by \(M \).

Method 1: Build a machine \(M_2 \) that accepts \(w \) and only \(w \)

Then feed \(\langle M, M_2 \rangle \) into \(L_2 \) algorithm:

\[L_2 \text{ algorithm (simplifies)} \]

says "yes" iff \(M \) accepts \(w \).

Method 2: From \(M, w \) let's build a \(TM \) that erases input.

1. Write \(w \) on tape
2. Run \(M \) on it

So \(\hat{M} \) accepts \(w \) if \(\langle M, w \rangle \in A_{TM} \), otherwise

\[\hat{M} \text{ rejects } w \]

Feed \(\langle \hat{M}, \hat{M} \rangle \) to \(L_2 \), \(L_2 \) "yes" if \(\langle M, w \rangle \in A_{TM} \)

\[\setminus \]

Accept Empty String \(\langle M \rangle \)

\[\text{ACCEPT - EMPTY STRING } \text{ } TM = \{ \langle M \rangle \mid \text{ } M \text{ is a Turing machine and } \text{ } M \text{ accepts } \epsilon \} \]

is undecidable:

\[\not\exists \]

If \(L_3 \) is decidable, given

\[\langle M, w \rangle \quad \longrightarrow \quad \text{build } \hat{M} \quad \text{feed } \hat{M} \quad \text{into } L_3 \]

in \(L_1 : A_{TM} \)

Start Poly Time (Ch 7) on Friday.