Today: § 4.2 + § 5.1 (in part)

Exam: One 2-sided 8½ x 11 sheet of notes,

Textbook: Formal description: you specify D

Implementation level: you give phases, how many tapes, how they move, etc.

High level: algorithm without any of discussion of types

\[\text{Input} \xrightarrow{\text{Turing machine}} \begin{cases} \text{accept (yes)} \\ \text{reject (no)} \end{cases} \]

"loop" never halt

Only countably many "standard \(T.M.'s \)" \(\mathcal{Q} = \{1, \ldots, q\} \)

\(\mathcal{M} = \{1, \ldots, m\} \)

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine that accepts } w \} \]

undecidable.

Proof that \(A_{TM} \) is undecidable: If \(H \) decides \(A_{TM} \)

(assume to get a contradiction), then build a Turing machine, using \(H \) as a subroutine, so this Turing machine can't exist.

Oracle Turing machines

Build a machine \(D \) such

\(D \) given \(\langle M \rangle \), \(D \) figures out if \(w = \langle M \rangle \)

for some Turing machine.

Recall: Turing machine description was based on \(\Sigma = \{0, \ldots, 9, L, R, \#\} \)

But \(\Sigma \) really should be \(\{0, \ldots, 9, 10, 11, 12\} \)
(2) If \(w = \langle M \rangle \), feed \(\langle M, \langle M \rangle \rangle \) to \(H \) (i.e. run \(H \) as a subroutine).

3. If \(H \) accepts \(\langle M, \langle M \rangle \rangle \), then \(D \) rejects.

 If \(D \) rejects \(\langle M, \langle M \rangle \rangle \), then \(D \) accepts.

What happens to \(D \) on input \(\langle D \rangle \)?

If \(D \) accepts \(\langle D \rangle \), then \(H \) rejects \(\langle D, \langle D \rangle \rangle \) \(\Rightarrow \) \(D \) reject \(\langle D \rangle \)

Remark: \(\overline{A_{TM}} \) is recognized by a Univ Turing machine.

But \(\overline{A_{TM}} = \Sigma^{*} \setminus A_{TM} \) is not even recognized by any Turing machine.

Why? Say you can recognize \(L \) by a Turing machine \(M_{1} \) and \(\overline{L} \) by a Turing machine \(M_{2} \).

Given \(w \), can run in parallel \(M_{1} \) and \(M_{2} \).

A lot of this course: the following are undecidable:

- \(A_{TM} \), \(\text{halt}_{TM} \), \(\text{DoWeReachState}_{TM} \), ...
- which problems should we not work: \(\text{SAT} \), \(\text{3-COLOR} \), ...
- too long to completely solve: \(\text{PSPACE-complete} \), ...

So, \(L = \{ \langle M, w, q \rangle \mid M \text{ is Turing machine, } w \text{ input to } M, \text{ we do encounter state } q \} \)

\(\text{DoWeReachSameState} \) along the computation of \(M \) given \(q \).

\(\text{DO-WE-REACH-SAME-STATE} \) is recognizable, but undecidable.
If we simulate M on input w, then if we ever land in q, we do so in finite number of steps, so we can stop and say ‘yes.’

But if L were decidable, to solve A_{TM} we just ask given $<M, w>$ does $<M, w, q_{acc}> \in L$?

Gwen, Le, Lz, ... are recognizable, then $L_1, L_2, L_3, ...$ are also recognizable.