Thm 4.1! (Section 4.2): \(A_T = \{ \langle M, w \rangle \mid w \text{ is accepted by } M \} \) is recognizable but not decidable.

\[
\text{Thm 4.1! (Section 4.2): } A_T = \{ \langle M, w \rangle \mid w \text{ is accepted by } M \} \\
\text{is recognizable but not decidable.}
\]

(1) \(L = \{ \langle 0^n \rangle \mid n \in \mathbb{N} \} \) is Turing decidable

Decidable: A language is Turing-decidable if there is a T.M., \(M \), that on input \(\omega \in \Sigma^* \), \(M \) accepts \(\omega \) if \(\omega \in L \)

\(M \) rejects \(\omega \) if \(\omega \notin L \)

Remark: A Turing machine on a given input can

1. accept the input \(\omega \) if it reaches \(q_{\text{accept}} \) (finite number of steps)
2. reject \(\omega \) if it reaches \(q_{\text{reject}} \) (infinite number of steps)
3. loops or does not halt, i.e., runs forever, never reaching \(q_{\text{accept}} \) or \(q_{\text{reject}} \)

(2) \(\text{PALINDROME} \) is Turing decidable

To describe a T.M., you usually:

- give a high level description (describes how many tapes, various phases, etc.,
- give an "implementation"

Specify \(\delta : \)

\[
\delta(q_{\text{init}}, s) = (q_{\text{halt}}, 2, \lambda)
\]

- 2\(\rightarrow 2\), \(\rightarrow \)
- \(\lambda \rightarrow 0 \), \(\rightarrow \)
- \(\rightarrow \), etc.

Say 2-tape

- \(\text{Palindromes} \)
\[\delta(q_{\text{init}}, 1, 2) = (q_1, 3, 1, R, S) \]

\[3, L \rightarrow 3, 1, R, S \rightarrow q_1 \]

\[q_{\text{init}} \]

\[\delta : Q \times \Gamma^2 \rightarrow Q \times \Gamma^2 \times \{L, R, S\}^2 \]

\[\delta(q_{\text{init}}, x, y) = (q_{\text{init}}, x, y, R, S) \text{ if } x \neq \# \text{ and } y \text{ any} \]

In 4.2, the textbook describes a universal Turing machine in one sentence 😞

Warm up: Graph \((V, E)\), \(\langle \text{graph} \rangle\) — give \# vertices, a list of edges

\[
\begin{align*}
&4 \neq 1 \# 3 \\
&1 \# 4 \neq 3 \# 4 \\
&1 \neq 4 \neq 2 \# 3 \neq 2 \# 4 \neq 3 \# 4 \\
&\neq 1 \# 4
\end{align*}
\]

(lexicographical order to get a unique representation)
(1) Let \(L = \{ \langle G \rangle \mid G \text{ is a graph that can be 3-coloured, i.e.} \)
\[\text{there exist } V \models \{1, 2, 3\} \text{ such that each edge has different colours} \]

started to give an algorithm to find bleh bleh

(2) Let \(L = \{ \langle D, w \rangle \mid D \text{ is a DFA}, w \text{ is an input to the DFA} \)
\[\text{that is accepted by the DFA} \]

\(\Delta_{DFA} \)

(\(q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow q_6 \))
\[q_{init} = 1, \quad q_1 = 2, \quad q_3 = 3, \quad q_{init}, \]
\[\text{describe \(\delta \) \(f \) \(1 \)} \]
\[\text{describe input,} \]
\[\text{Section 4.1 of Sipser} \]

(3) Last Friday: \(\langle M, w \rangle \) description of a T.m. and \(w \) input

(\(Q, \Sigma, \delta, \text{acc}, \text{ rej}, \text{ init} \))
\[\text{27 # 3 # 5 # long description} \]
\[\text{of} \]
\[\# 2 \# 1 \# 3 \]
Claim: There is a "universal Turing machine," U, such that

on input $\langle M, w \rangle$, U stops in q_{acx} if M accepts w

U stops in q_{rej}... reject w

time... U doesn't halt if M doesn't halt

($C_1 + \text{poly time}$) on input w

debugger

Describe input describe M describe w

$\text{tape 1 } \rightarrow$

$\text{tape 2 } \rightarrow$ copy input

(simulation of the $\text{tape 2 } \rightarrow$)

where the tape head is

$\text{tape 2 } \rightarrow$ copy input

$\text{future } \rightarrow$

look here look here