Section 1.3 Regular Expressions

- Regular Expressicns (Limited Sel)
- Equvaleat to Regulor Lenguages

Regular Gapression: over alphabet Σ :
(1) $(\sigma) \quad \sigma \in \mathcal{E}$
(2) $(\varepsilon) \quad \varepsilon=$ ementy fing
(3) \varnothing empty

If R_{1}, R_{2} reguler expressions, then
(4) $\left(R_{1} \cup R_{2}\right)$ is a regular expression
(5) $\left(R_{1} \circ R_{2}\right)$, or $\operatorname{simp}_{\mathrm{p}}$ ($R_{1}\left(R_{2}\right)$ is a reghtor experssom
$(\sigma)\left(R_{1}^{*}\right)$ is a regulv exprestion
e.g. $\quad \Sigma=\{a, b\}$

- Then $(a-b)^{*} b$ is a reguler expersion
- Expross two-lettr wards! ($a \cup b) \subset(a \cup b)$

$$
\Sigma=\{a, b\}
$$

$$
\begin{aligned}
& \sum_{\sum} \leftarrow \sum^{\sum} \leftarrow \text { shathand } \\
& \Sigma^{2}=\Sigma \circ \Sigma \leftarrow \text { shothow }
\end{aligned}
$$

- Express single ward a^{s}

$$
((a \circ a) \circ(a)) \circ(a \circ a) \text { write as } a^{5}
$$

$$
a<a \circ c o a \circ a \text { write as } a^{5}
$$

$$
\begin{aligned}
& E=\{0,1, \ldots, 9\} \\
& \text { Reform to }\{1,3,5,7,9\} \leftrightarrow)((((1 \cup 3) \cup 5) \cup 7) \cup 9) \quad(\cdots \\
& 103050749 \\
& 1,3,5,7,9 \quad \cup \longleftrightarrow 1
\end{aligned}
$$

Gwen reguls expression, R, there is an assccietod language $L(R)$.

$$
\left(a^{5} \cup a^{7}\right)^{*}, \quad L\left(\left(a^{5} \cup a^{7}\right)^{*}\right)=\left\{\varepsilon, a^{5}, a^{7}, a^{10}, a^{12}, a^{14}, \ldots\right\}
$$

Sanctions

$$
L^{+}=\underline{L^{1} \cup L^{2} \cup L^{3} \cup \ldots}=\underline{L} \underline{L}^{k}=\left\{\begin{array}{l}
\text { are or more elements of } L \\
\text { coneatonted tegrahe }\}
\end{array}\right.
$$

So we allow $L\left((a b b)^{+}\right)=\{a b b, c b b a b b, \ldots\}$
The: L is regular \Longleftrightarrow there is a regular expression describing L
Textbook: $\phi^{*} \stackrel{?}{=}\left\{\{ \}=\phi^{\circ}\right.$

$$
=\phi^{\circ} \cdot \phi^{\prime} \cdot \ldots
$$

Easy: Given a regular expression, R, we can down an NFA that regcgnizes the language R describes.
Why' $\Sigma=\{a, b\}$ righter exarossica a $k \sim \rightarrow 0{ }^{a}$ (0)
Gwen R_{1}, R_{2} to each $N F A, m_{1}, m_{2} \quad \varnothing$

input abbbbabbbacabab...

$=$
Part 2: Given a DEA/NEA \leadsto reg expressian
eig.

$$
\begin{aligned}
& \Delta \mid V-B Y_{-}=\{0,3,6,9,12,15, \ldots\} \\
& D \mid V-B Y-2=\{0,2,4,6,8,10,12, \ldots\}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 2 \text { digít number }
\end{aligned}
$$

DIV-BY_Z - LEAOING_ZEROS_OK_EMPYY_STRING_NOT_OK

$$
\Leftrightarrow \quad \Sigma^{*}(0.0244608)
$$

There is a procedure: take NFA: insist:

Cculd add

intermediste state

