Homework:

All maps \(S \rightarrow T \)

All maps \(A^* \rightarrow \{\text{yes}, \text{no}\} \) decision problems

\(\Rightarrow \) language \(A \)

Section 1.2 Non-deterministic finite automata

1. This is important for \(P \) vs \(NP \)

2. We actually need to, has applications

\[\{ \text{ruh, uh} \}^* = \{ \varepsilon, \text{ruh, uh, ruhuh, ...} \} \]

\[\{ a^5, a^3 \}^* \cap \{ \text{abba, bcaab} \}^* \]

If \(L \) has "overlap," even knowing what \(L^* \) is can be tricky...

\[\{ a^5, a^7 \}^* = \{ \varepsilon, a^5, a^7, a^{10} = a^5 a^5, a^{12} = a^5 a^7, ... \} \]

but \(a^{23} \in \uparrow \), but \(a^{24}, a^{25}, a^{26}, ... \) is
\[\{a^5, a^7\}^* = \{ (a^5)^m (a^7)^n \mid m,n \in \mathbb{N} \} \]

DFA for \(\{a^5, a^7\} \) over \(\Sigma = \{a\} \):

\[q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_4 \]

Use "non-determinism."

Called NFA, non-deterministic finite automaton

Rule: If input "abba," has at least one path to a final/accepting state, then input is accepted.

(1) If \(L \) is regular, then \(L^* \) is recognized by some NFA
(2) Any language recognized by an NFA, is recognized by some DFA
NFA for $\{a^5, a^3\}$ over $\Sigma = \{a\}$.

```
NFA

\[ \begin{array}{c}
\qquad \text{NFA for } \{a^5, a^3\} \text{ over } \Sigma = \{a\}.

\begin{array}{c}
\text{\begin{array}{c}
\text{q}_0 \\
\text{q}_2 \\
\text{q}_4 \\
\text{q}_5 \\
\end{array}}
\end{array}
\end{array} \]
```

Input a^5:
$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow q_0 \rightarrow \ldots$

We could change q_5 to q_5

Say $\{s \in \{a,b\}^* | s \text{ has } \textit{abba} \text{ or } \textit{bbba} \text{ as substring} \}$

```
\[
\begin{array}{c}
\text{Another example of where non-determinism makes building automaton easier.}

\begin{array}{c}
\text{Input } \textit{bbababaaabaaab}.
\end{array}
\end{array}
```

```
Input: Which states could I possibly reach?

\[ \{q_0\} \]

\[ \{q_1\} \]

\[ \{q_2\} \]

\[ \{q_3, q_4\} \]

\[ \{q_7, q_0, q_2\} \]

In general: \( \text{Power}(Q) \): set of all subsets of states

Say \( \{q_0, q_3, q_2, q_1\} \) in an NFA, read \( c \) \( \{ \_ \_ \_ \_ \} \)
DFA recognizes \( L \)

recognize \( L \) \( \text{comp} = \emptyset \) \( L \)