Homework:
All maps $S \rightarrow T$
All maps $A^{*} \rightarrow\{$ yes, no $\}$ decision problems
languages offer A
Section $1.2 \quad \underbrace{\text { Nondeterministic finite actomata }}$
(1) this is important
for P vs NP
(2) We actually need to, has applications

$$
\begin{aligned}
& \{r u h, u h\}^{*}=\{\varepsilon, \text { rah, uh, ruhuh, ... \} ~ } \\
& \left\{a^{5}, a^{7}\right\}^{*}
\end{aligned}
$$

$\prod_{\text {agamic agama }}^{p}$ If L has "overtop," even knowing what L^{*} is san be tricky...

$$
\left\{a^{5}, a^{7}\right\}^{k}=\left\{\varepsilon, a^{5}, a^{7}, a^{10}=a^{5} a^{5}, a^{12}=a^{5} a^{7}, \cdots\right\}
$$

but $a^{23} \in \hat{\jmath}$, but $a^{24}, a^{25}, a^{26}, \ldots$ is

$$
\left\{a^{5}, a^{7}\right\}^{*}=\left\{\left(a^{5}\right)^{m}\left(a^{7}\right)^{n}=a^{5 m+7 m},\right\}
$$

DFA for $\left\{a^{5}, a^{7}\right\}$ over $\sum=\{a\}$:

$$
\begin{equation*}
\rightarrow q_{0} \stackrel{a}{\longrightarrow}\left(q_{1}\right) \xrightarrow{a}\left(q_{2} \stackrel{a}{\left(q_{3}\right.}\right) \stackrel{a}{\left(q_{4}\right)} \tag{8}
\end{equation*}
$$

Usc "non-determunism"

$$
\left(\frac{b}{i b}\right) \underset{a}{\stackrel{a}{\leftrightarrows}} \quad \begin{gathered}
\text { mare then } \\
\text { one choice }
\end{gathered}
$$

Called NFA non-determiric finite automation
(1) If L is regular, then L^{*} is recognized by same

many paths inpot $a b$...

Rule: If irput "abba" has at leart one path to a finc//acepting state, then inpot is cacepted.

NFA
(2) Any langurage recognizet by an NEA, is recegnized by some DFA

NFA
for $\left\{a^{5}, a^{7}\right\}^{*}$ over $\Sigma=\{a\}$:

inpot $a^{\text {to }}$: $q_{0} a_{q_{1}} a_{q_{2}} a_{q_{3}} a_{q_{4}} a^{a}$

We calld chinge

to 95
Sal $\left\{s \in\{a, b\}^{k} \mid\right.$ s hes abbe or bbb as suboting $\}$

Ansther example of where non-determinion mater boilding autimetion easier

Inpat bbababbaaanba. -

Input Which states could I possibly reach?

after 5 a's

$a \quad\left\{q s, q_{1}\right\}$
$a \quad\left\{q_{7}, q_{0}, q_{2}\right\}$
$=$
In general: Pourer): set of all subsets of slates
say $\left\{q_{0}, q_{3}, q_{27}, q_{e}\right\}$ in an NFNA,
$\operatorname{read} \subset\{\}$

$$
\text { reagnise } L^{\text {comip }}=\mathcal{E}^{*} \backslash L
$$

