Remorks:

Very (interestry Section 1.2 Non-dctesministic Finite Automata
Applications Section 1.3 Regular Expressions

use M, hill-Norode thearem
$=$
Left week:

$$
D V_{-B Y-2}=\{0,2,4,6,8,10,12, \ldots\}
$$

over $\sum=\{c, \ldots, a\}$

$\longrightarrow C$ iribicl stete
 accertimy (fincl) stite
$\bigcirc$ rejectorg ide


$$
\begin{aligned}
& \text { Say DN-BY-2 hes DFA Li } \\
& \text { AIV_BY-3 has DFA } \\
& \underbrace{D I V-B Y_{1}-6}_{L_{1} \cap L_{2}} \ldots \text { ? } \\
& =\{0,6,12,18, \ldots\} \quad \Sigma^{\text {tracosinin }} \text { Q fonetime } Q \\
& L_{1} \quad D f A=\left(Q, \Sigma, \sigma, q_{0}, F\right)=m_{1} \\
& L_{2} \quad D F A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)=m_{2}
\end{aligned}
$$

Car we run $m_{1}$ ad $m_{2}$ "in perallel"?
Merhod:
inpt string $\sigma_{1} \sigma_{2} \sigma_{3} \ldots$

$$
\begin{aligned}
& m_{1}: q_{0}^{0} q^{\sim} q^{\wedge} q \\
& m_{2}: q_{0}^{\prime} q^{\prime}{ }^{\prime} q^{\prime} \sim q^{\prime} \text { etc. }
\end{aligned}
$$

So "merge states"

$$
\left.\begin{array}{l}
Q=\left\{q_{0}, q_{1}, q_{2}, \ldots\right\} \\
Q^{\prime}=\left\{q_{0}^{\prime}, q_{1}^{\prime}, \ldots\right\}
\end{array}\right\} Q \times Q^{\prime}=\left\{\left(q_{0}, q_{0}^{\prime}\right),\right.
$$

machine for $a b$ is sulbsting, $\sum=\{a, b, c\}$

machine is then at lect are (


If $L_{1} \cap L_{2} \quad\left(q, q^{\prime}\right)$ is find if $q$ is find for $m_{1}$
If $L_{1} \cup L_{2} \quad\left(q, q^{\prime}\right)$ is final if $q^{\text {is foal } O R ~} q^{\prime \text { is }}$ Find $\mathrm{mm}_{2} m_{2}$ If $L_{1} \backslash L_{2}$ or $L_{2} \backslash L_{1}$

Here is what leads to Section 1,2 (ron-detesminism)
If $L$ is a languzge aver $\sum$,

$$
\begin{aligned}
& L^{*}=\left\{s_{1} s_{2} \ldots s_{k} \mid s_{1}, \ldots, s_{k} \in L\right\} \\
& (\text { ruh, uh })^{*}=\{\varepsilon, \text { ruh, wh, rohoh, rohroh, whuh, } \ldots\} \\
& (\text { langrouge })^{*}=
\end{aligned}
$$

If $\underbrace{L \text { is regular, then so is } \underbrace{L^{K}}_{\text {has a DFA }} \text {. }}_{\text {has a } \operatorname{DFA}}$
Exemplo $\left\{a^{5}, a^{7}\right\}^{*} \quad \sum=\{a\} \quad\left(a^{5}=a a a a a\right.$, etc $)$

What is $\left\{a^{5}, a^{7}\right\}^{*}=\left\{\varepsilon=a^{0}, a^{5}, a^{7}, a^{10}, a^{12}\right.$, not $a^{9}, a^{11}, a^{13}$

$$
\begin{aligned}
& \left.a^{22}, a^{23}, a^{24} \in\left\{a^{5}, a^{7}\right\}^{k}=? ?\right) \\
& a^{23} e^{? ?!}\left\{a^{5}, a^{7}\right\}^{k} \in \text { non-trivis } \\
& a^{24}, a^{25}, \ldots \in\left\{a^{5}, a^{7}\right\}^{4}
\end{aligned}
$$

