§4.2 [si,7]	Halting problem Section & l undersideble Self-referencing + regular
	(Runcantible Some problems have no solution Scatica 2) (The Connection 2
	(The Connection
Where are we	each has a stray representation over A Frome alphabet
A # strings	some are SCA algorithms
f:S	-> { decisian problems}
51	the decision problem
Carrelo (Ay :	f: S (decista problems)
	not a surjection. Proof: S countable but {decision problems} concautable
	(decision problems) unecountable, Characterole Characterole Characterole

Definition If S is a set, then the power set of 5,
denoted Power (S) (or 25") is the set of all subsets
AS.
Power ({a,b,c}) = { / , {a}, {b}, {c} , {e,b}, {a,c}, {b,c}, {a,b,c}
8
If S is finite Powr(S) = 2 5 = "2 to the power ISI"
{ decision problems} = { all subjects of A*}
fix some finite alphabot A
At = all strings, decision problem: At of no, yes)
we view A hor, yes the subset of At where you say "yes"
e.g. PRIMES = { Se {0,1,,9}* yes, S represents a prime }
So (decision problems) (subset of A)
look where = Power (At)
few answer
A = A U A U A U A = k over A

$\{a,b\}$ = $\{\epsilon, a, b, aa, ab, bc, bb, \dots\}$
Claim: Power (At) is uncountable.
(α) = (ε, α, αα, ααασα ³ , αααασα ⁴ ,)
Canter's Thm: If f: S > Power(5), then f is not swjective. Erg. S={a,b,c} 5 =3 Power(5) =23
f is not swjective.
eig. S={a,b,c} 5 =3 Power(5) =2=
for Sfinite, S =n w n < 2h
Pf of Centor's Ihm: Let f: 5 -> Power(5).
Let $T = \{ s \in S \mid s \notin f(s) \}$.
Imagine that t sit, flt) = T (if no such t exists
then f is not a sujection.
Einther tET => t & f(x) = T impossible
or t # T =) t does not satisfy t # f(t) =) te f(t) = T
infessible.

Example
$$S = \{a,b,c\}$$
. Pick $f(a) = \{a,b\}$

$$f(b) = \{a,b,c\}$$

$$f(c) = \{b\}$$

$$T = \{c \in S \mid s \notin f(s)\} = \{c\}$$

$$a \in f(c) = \{a,b\} \text{ yes}$$

$$b \in f(b) = \{a,b\} \text{ yes}$$

$$c \in f(c) = \{b\} \text{ no}$$

$$a \text{ outerway} f(a) f(b) f(b)$$

$$a \text{ yes}$$

$$b \text{ yes}$$

$$c \text{ outerway} f(a) f(b) f(b)$$

$$c \text{ outerway} f(a) f(b) f(b)$$