Lest time:
Textbook (Sip] ChI machree... algorithm
Ch 2 . . -
(h) 3
cf - - -
Section 4.2
$\left\{\begin{array}{l}\text { Section } \mathrm{r} \text { (1) Halting cart be decided } \\ \text { Section } 2 \\ \mathrm{y}\end{array}\right.$

"Negation"

Section 1! (1) - "I am Hing"
(2) -" This statement is fake" \longleftarrow statement ρ :
s is true $\Rightarrow \quad s$ is flake
s is fake $\Rightarrow 5$ in not false $\stackrel{?}{\Rightarrow} s$ is true.
The: If you can build such statement, s, then either: - 5 is true and s if false - sis neiflor true hor false
(3)

Seams Leslie writes about i (and only about) those who do not moyle $\{$ write about themselves.

Q! Does Lestie write aba Leslie?
If Leslie writes about Leslie \Rightarrow Leslie does not urine abublerlie " " does not write " " \Rightarrow Lerlic writes in "
(4) Pet x be the smallest positive integer not described
by a phrase of fewer than fifty words.
What is x ? Say $x=12,121,121,121,121$. Then
(1) $-\sqrt{4}$ are "paradoxes"

$$
x \text { is described as }
$$

"the smallest porithe integer"
(5-(7) includes informal
prose that the Halting
problem cant be solved

IR are uncountable:
Sal you hove a $\operatorname{mop} \quad f!\mathbb{N} \rightarrow \mathbb{R}$, i.e.

$$
r_{1}=f(1), r_{2}=f(2), r_{3}=f(3), \ldots
$$

Went to \mathbb{E} ind $r \in \mathbb{R}$ sit. $r \neq r_{1}, r \neq r_{2}, r \neq r_{3, \ldots}$

$$
\begin{aligned}
& \text { (pick cipher le 2) } \\
& r=0.11112 \ldots \\
& r \neq r_{1} \text { by digit *) } \\
& \text { [} 5 x \text {]: } \\
& r \neq r_{2}{ }^{\prime \prime *} \text { "2 } \\
& .1350000 \text { - } \\
& =.1349949-
\end{aligned}
$$

$=$
Question: Can we prove \mathbb{R}^{+}are not countable?

$$
\begin{array}{ll}
r_{1}=0.3(3) 333= & r=0.1112 \ldots \\
\left.r_{2}=0.14\right) 28 \ldots & \text { no gusantee that } \\
\sigma_{3}=0.25(2) 0 \cdots & r \text { is rational } \\
r_{4}=0.1111111 &
\end{array}
$$

Is \mathbb{N} countuble?

$$
\begin{aligned}
1 & =n_{1} \\
2 & =n_{2} \\
7154 & =n_{3}
\end{aligned}
$$

