CPSC $421 / 501$, Sept 6.
Short article or class website
Reading: Handout on Uncountability, etc. $\}$ Topic 1 [Sip] Chapter $0 \leftarrow$ plot and choose $\left.\begin{array}{c}{\left[S_{i p}\right] \text { Section } 4.2 \text {, pages } 202 \text { (middle) to }} \\ 207 \text { (top) } \\ \rightarrow \text { i.e. THE DIAGONALIEATION METHON }\end{array}\right\}$ out of \rightarrow ie. THE DIAGONALIEATION METHON nowhere

Section $2 \rightarrow$ Cantor's Thu, Uncoumchility
$\left.\begin{array}{c}\text { Bottom Line: How many } \\ \text { algorithms? } \\ \text { " } \\ \text { " } \\ \text { " textbooks? }\end{array}\right\}$ PhD thesis \quad Countable
The number of decision problems
" Uncountable
p 203 [Sir]: Injections, Surjections, Bijections,...

5 Menus $\rightarrow 6$ people
$\left.\begin{array}{ll}\text { (1) Ever natural numbers } & \{2,4,6,8, \ldots\} \\ \text { (2) Natural numbers } \mathbb{N}=\{1,2,3,4,5, \ldots\} \\ & n \\ \text { (3) Integers } \mathbb{Z}=\{\ldots-2,-1,0,1,2, \ldots\}\end{array}\right\}$ some
(4) Reals

17
$\begin{array}{llllllll}\text { Ever nativals } & 2 & 4 & 6 & 8 & 10 & \ldots & \text { same }(77) \\ \text { Ncturals } & \hat{i} & \hat{L} & \hat{i} & \hat{L} & \hat{L} & \ldots & \operatorname{size}(\ldots)\end{array}$
Def S is countable if there is a surjective map $f: \mathbb{N} \rightarrow S$.
Athother way! S is countable if either
(1) S is a finite set, $O R$
(2) There is a bijection $f: \mathbb{N} \rightarrow S$, i.e.
correspondrce

$$
S=\{f(1), f(2), f(3), \ldots\}
$$

$=$
Irjections, Surjections, Bijections,...
And: $\mathbb{N} \rightarrow\{$ \{even naturals $\}$

$$
f(x)=2 x
$$

$$
y / 2 \longleftarrow y
$$

$$
=
$$

Injection: ID rumbers, S.I.N.
$f: s \rightarrow T$ is injective if $s_{1} \neq s_{2} \in S, f\left(s_{1}\right) \neq f\left(s_{2}\right)$
e..,$\quad\{$ UBC studuts $\} \rightarrow\{8$-dijit numbers $\}$
sree 10^{8}

Surjection: 18 TA's, want give office havs evory aly of week
$f: S \rightarrow T$ is rurjective (onto) if for each $t \in T$ there is some (st lecst one) $s \in S$ s.t. $f(5)=t$

Bijective: - Both in jective and soujective

$$
\text { - Or }\left\{\begin{array}{l}
\text { perfeet metchir } \\
\text { One- to-one carrespondance }
\end{array}\right\} \quad S \leftrightarrow T
$$

S Countably infinite \Leftrightarrow there is a bijection $S \longleftrightarrow \mathbb{N}$
Exarple: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ are countable.

$$
\left.\begin{array}{rl}
\mathbb{N}=\left\{\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 7,3, \ldots
\end{array}\right\} \\
f\left(\begin{array}{ccccc}
& -1 & -2 & 2 & -3
\end{array} 3\right. & 3
\end{array}\right]+\begin{array}{ccc}
(x-1) / 2 & x & \text { odd } \\
-x / 2 & x \text { even }
\end{array}
$$

Exernple: Posítive Ratimal Numbus

$$
1 / 1
$$

$2 / 1 \quad 1 / 2$
3)1

$$
1 / 3
$$

$4 / 1 \quad 3 / 2$
$2 / 3$
$1 / 4$

surjection

1	111
2	211
3	112
4	$3 / 1$
5	212

Rem: If there is a surjection $S \rightarrow T$ and $T \rightarrow S$ then there is a bijection $S \leftrightarrow T$

Example: \mathbb{R} is uncountable.

$$
\begin{aligned}
& r_{1}=3.21791 \\
& r_{2}=4.31147 \\
& r_{3}=-12
\end{aligned}
$$

