CPSC 421/501.
- Welcome
- Course page: Navigate from www.cs.ubc.ca/~jf/courses
- Instructor! Joel Friedman, jf@cs.ubc.ca
- Piazza page
piazza.com/ubc.ca/winderterm12019/cpsc421
- Grade: 421 \leftarrow 55% (f) + 35% max(m,f) + 10% max(h,m,f) f,m,h = final, midterm, homework
501 ← 80% (formula for CPSC 421) + 20% (essey)
- Homework, Office Hours ! Details TBA

- Course Content: What is "P vs. NP", how to perhaps
solve, and how not to solve, P us. NP
Old, mid 1900's view:
Chapter 1 - Regular languages Chapter X- sontacting languages Chapter 3 and on - Turing machines,
For first week or so, begin with handout
on course we bruge:
(O) Decision Problems and Languages Ch.G [Sip]
(1) Self-referencing "Paradoxes" and theorem proofs"
(2) Cantor's Theorem and Uncountable Sets
Ch 0: Languages
Decision Problems: yes no
princlity: Given nelN={1,2,3,}, is n prime?
3-colourability: Given a grapt, is it 3-colourable?
vacation email: Given a string, does the word "vacation"
PRIMES = {

- Alphabet is a funte, non-empty set - A word string is a finite sequence in the alphabet A = {0, ..., 9}, string over A (3,4,7,9,2) = 34792- A languege over A is a subset of all strings over A Primes: D= {0,1,-., 9}, D*= {all strugs over A} PRIMES = { S & D* | S represents a prime number} 421, 2,3,5,7,127 & PRIMES # PRIMES 221, 320,420 IS 0421 & PRIME?

What does
PRIMES = { SED* S represents a prime number }
really mean? Need to be more precise
Possibility !!
PRIMES = { S = S, S2Sk S; \in D, S
S, 10 + S2 10 + + Sk 10
is prime}
PRIMES = { (n) n EM, n is prime }
description of n
= graph my compater: (graph)

Descriptions of 127:

(127) base 2 = ||||||

(127) Hox = 7F

(127) English = one hundred and twenty-seven

(127) French = cent vignt-sept

(127) Klingen = wa'vatlh wejnatt Soch

(127)₁₀ = 127