HOMEWORK 8, CPSC 421/501, FALL 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework, but you must write up your own solutions individually. You must acknowledge with whom you worked. You must also acknowledge any sources you have used beyond the textbook and two articles on the class website.
(1) Consider the Boolean variables $x_{i j \gamma}, y_{i j}$, and $z_{i q}$ to describe the configuration of a non-deterministic Turing machine at step i as in class to prove that SAT and 3SAT are NP-complete (see notes of November 1, 4, and 6). ${ }^{1}$
(a) What is the meaning of the formula

$$
\left(x_{i, j, \sigma}=\operatorname{true}\right) \wedge\left(y_{i, j}=\operatorname{true}\right) \wedge\left(z_{i, q}=\operatorname{true}\right)
$$

(\wedge means AND) in terms of the Turing machine configuration at step i ? (b) Explain why the formula in part (a) has the same true/false values as

$$
x_{i, j, \sigma} \wedge y_{i, j} \wedge z_{i, q}
$$

(c) Explain the meaning of the formula

$$
x_{i, j, \sigma} \wedge y_{i, j} \wedge z_{i, q} \Rightarrow\left(x_{i, j^{\prime}, \sigma^{\prime}}=x_{i+1, j^{\prime}, \sigma^{\prime}}\right)
$$

and why part of our proof of the Cook-Levin theorem (i.e., that SAT and 3SAT are NP-complete) involves formulas like this.
(d) Show that the Boolean formula $u_{4}=u_{5}$ is equivalent to the formula

$$
\left(\neg u_{4} \vee u_{5}\right) \wedge\left(u_{4} \vee \neg u_{5}\right)
$$

[^0](e) Use the fact that $p \Rightarrow q$ is equivalent to $\neg p \vee q(\vee$ is OR$)$ to write
$$
u_{1} \wedge u_{2} \wedge u_{3} \Rightarrow\left(u_{4}=u_{5}\right)
$$ using just \neg, \vee, \wedge and the u_{1}, \ldots, u_{5}.
(f) Write a 3CNF formula that is satisfiable iff the variables u_{1}, \ldots, u_{5} satisfy
$$
u_{1} \wedge u_{2} \wedge u_{3} \Rightarrow\left(u_{4}=u_{5}\right)
$$
(g) How are parts (c) and (f) involved in our proof (in class) that 3SAT is NP-complete?
(2) In view of Problem (1), explain the meaning of the formula
$x_{i, j, \sigma} \wedge y_{i, j} \wedge z_{i, q} \Rightarrow\left(\left(x_{i+1, j, \sigma^{\prime}} \wedge y_{i+1, j+1} \wedge z_{i+1, q^{\prime}}\right) \vee\left(x_{i+1, j, \sigma^{\prime \prime}} \wedge y_{i+1, j-1} \wedge z_{i+1, q^{\prime \prime}}\right)\right)$.
For which value of $\delta(q, \sigma)$ would you use a formula like this (where δ is the non-deterministic Turing machine transition function)?
(3) Show that if SAT can be decided in polynomial time, then there is a Turing machine that in polynomial time takes as input a Boolean formula $f\left(x_{1}, \ldots, x_{n}\right)$ and gives you true/false values for x_{1}, \ldots, x_{n} for which $f\left(x_{1}, \ldots, x_{n}\right)$ is true, provided that f is satisfiable. [Hint: as a first step, notice that if $f\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable, then either $f\left(\right.$ true, $\left.x_{2}, \ldots, x_{n}\right)$ is satisfiable or $f\left(\right.$ false, $\left.x_{2}, \ldots, x_{n}\right)$ is satisfiable.]
(4) Using your answer to Question 2, show that if SAT can be decided in polynomial time, then there is a Turing machine that in polynomial time takes as input a graph and returns a 3-colouring of the graph if the graph can be 3-coloured.
(5) Using your answer to Question 2, show that if SAT can be decided in polynomial time, then there is a Turing machine that in polynomial time takes as input a positive integer and returns a non-trivial factorization of the integer (i.e., as the product of two smaller positive integers) if one exists.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.
 ${ }^{1}$ So $x_{i j \gamma}$ is true iff at step i and cell j the symbol γ appears there; $y_{i j}$ is true iff at step i the tape head is over cell j; and $z_{i q}$ is true iff at step i the configuration is in state q.

