HOMEWORK 4, CPSC 421/501, FALL 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework, but you must write up your own solutions individually. You must acknowledge with whom you worked. You must also acknowledge any sources you have used beyond the textbook and two articles on the class website.
(1) Let DIV-BY-2 be the language

$$
\{0,2,4,6,8,10,12, \ldots\}
$$

over $\Sigma=\{0,1, \ldots, 9\}$. In class we gave a 5 state DFA to recognize this language (see the beginning of the notes of Sept. 20). Take this DFA and convert this to a regular expression for DIV-BY-2 using the procedure described in [Sip] Section 1.3 (or see the notes for Sept. 30 and Oct. 2), as follows: (1) introduce a state $q_{\text {end }}$ as a new unique final state, (2) then eliminate $q_{\text {bad }}$, then $q_{\text {saw } 0}$, then $q_{\text {odd }}$, then $q_{\text {even }}$.
(2) For any string of length $k, s=\sigma_{1} \sigma_{2} \ldots \sigma_{k}$ over an alphabet Σ, we define the reverse string of s to be the string

$$
s^{\mathrm{rev}}=\sigma_{k} \sigma_{k-1} \cdots \sigma_{2} \sigma_{1}
$$

For any language, L over Σ, we define the reverse of L to be the language

$$
L^{\mathrm{rev}} \stackrel{\text { def }}{=}\left\{s^{\mathrm{rev}} \mid s \in L\right\} .
$$

[^0](a) Describe a general procedure that takes take a DFA or an NFA with n states that recognizes a language L, and produces an NFA recognizing $L^{\text {rev }}$ with at most $n+1$ or $n+2$ states. [Hint: the set of states of the new NFA can be almost the same set of states.]
(b) Illustrate your construction on the DFA in Problem 1 for DIV-BY-2.
(c) If L is recognized by a DFA with n states, give an upper bound on the size of a DFA (i.e., number of states of a DFA) that recognizes $L^{\text {rev }}$.
(3) Use the Myhill-Nerode theorem to show that the language
$$
L=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}, n>m\right\}
$$
over $\Sigma=\{a, b\}$ is not regular, by proving that the sets
$$
\operatorname{AccFut}_{L}(a), \operatorname{AccFut}_{L}\left(a^{2}\right), \operatorname{AccFut}_{L}\left(a^{3}\right), \ldots
$$
are all different.
(4) Let $\Sigma=\{0,1\}$.
(a) Show that the language $L=\Sigma^{9} 1 \Sigma^{*}$ is recognized by DFA with 12 states. [Hint: It is simplest to give a DFA and explain how it works.]
(b) Show that any DFA recognizing the language $L=\Sigma^{*} 1 \Sigma^{9}$ must have at least 1024 states. [Hint: One way to do this is to show that if s, s^{\prime} are strings of length 10 over Σ, then $\operatorname{AccFut}_{L}(s) \neq \operatorname{AccFut}_{L}\left(s^{\prime}\right)$.]
(c) How does this relate to your answer in Problem 2(c)?

(End of Homework Problems to be Submitted for Credit.)

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

