
SNEAKY COMPLETE LANGUAGES

JOEL FRIEDMAN

Contents

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elabo-
rate upon and/or correct in class. For those not in CPSC 421/501: use this material
at your own risk. . .

There is a standard way to produce an languages that are complete for NP and
PSPACE (under polynomial time reductions). Let us start with the NP-complete
language.

Let

NP-SNEAKY = {〈M,w, 1t〉 |M is a non-deterministic T.m. that accepts w within time t}.

We claim that NP-SNEAKY is NP-complete. To prove this we need to show that
(1) NP-SNEAKY lies in NP, and (2) any L ∈ NP can be reduced in polynomial
time to NP-SNEAKY. Claim (2) is almost immediate, and claim (1) requires a bit
more thought: you run a (non-deterministic) universal Turing machine for t steps of
M on input w, and you have to verify that the simulation runs in time polynomial
of

〈M〉 + 〈w〉 + t.

This is easy (since the input size is at least t), and was done in class. You should
be aware that the simulation will not run in time in in time polynomial of

〈M〉 + 〈w〉 + log2 t.

For this reason the language

NP-FAIL = {〈M,w, t〉 |M is a non-deterministic T.m. that accepts w within time t}

will fail to be in NP, when you describe t in base 10 or binary, as one is accustomed
to doing.

You might compare this to showing that SAT is NP-complete: showing that SAT
is in NP is easy, but showing that any language in NP can be reduced to SAT is the
essence of the Cook-Levin theorem, and is much more elaborate. For NP-SNEAKY
both steps in showing NP-completeness are easy, but the first step—which requires
a universal Turning machine—is more difficult than the second.

Research supported in part by an NSERC grant.

1



2 JOEL FRIEDMAN

Another comparison between NP-SNEAKY and SAT (and 3COLOR, VERTEX-
EXPANSION, PARTITION, etc.) is that the latter problems are interesting in ap-
plications, whereas NP-SNEAKY is just a formal construction that doesn’t seem to
have applications beyond giving a language with a simple proof of NP-completeness.

Similar remarks hold for the language:

PSPACE-SNEAKY = {〈M,w, 1s〉 |M is a non-deterministic T.m. that accepts w using at most space s},
which we easily show is complete for PSPACE under polynomial time reductions,
i.e., (1) PSPACE-SNEAKY lies in PSPACE, and (2) if L lies in PSPACE, then
there is a polynomial time reduction of L to PSPACE-SNEAKY.

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA.
E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf


