ADDITIONAL MIDTERM PRACTICE, CPSC 421/501, FALL 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All problems on Homework 1-6 are practice midterm problems.

- (1) State which sets are countable, and which are uncountable; justify your answer¹.
 - (a) \mathbb{R}^2 .
 - (b) $\mathbb{N} \times \mathbb{R}$.
 - (c) $\mathbb{N} \times \mathbb{Z}$.
 - (d) The set of all graphs.
 - (e) The set of all graphs whose vertex equals $\{1, 2, ..., n\}$ for some integer n.
 - (f) The set of all Turing machines.
 - (g) The set of all Turing machines whose set of states equals $\{1, \ldots, q\}$ for some integer q, and whose tape alphabet equals $\{1, \ldots, \gamma\}$ for some integer γ .
- (2) State whether the statements below are true or false, and justify your answer.
 - (a) If L_1 and L_2 are regular languages over the same alphabet, then $L_1 \cup L_2$ is regular.
 - (b) If L_1 and L_2 are regular languages over the same alphabet, then $L_1 \cap L_2$ is regular.
 - (c) If L_1 and L_2 are regular languages over the same alphabet, then $L_1 \setminus L_2$ is regular.
 - (d) If L is a regular language over Σ, then the complement of L in Σ*, i.e., Σ* \ L is regular.
 - (e) If L is a regular language, then L must be Turing decidable.
 - (f) If L is a Turing decidable language, then L must be regular.

(c) If $S \to T$ is injective and S is uncountable, then T is uncountable.

Research supported in part by an NSERC grant.

¹ In your justification, you may use the following facts:

⁽a) the following are equivalent conditions that S be countable: (1) S is finite or there is a bijection between \mathbb{N} and S, (2) there is a surjection $\mathbb{N} \to S$, (3) there is an injection $S \to \mathbb{N}$.

⁽b) If $S \to T$ is surjective and S is countable, then T is countable,

⁽d) For any set S, there is no surjection from $S \to \operatorname{Power}(S)$.

⁽e) The \mathbb{R} is uncountable.

⁽f) For any alphabet A, A^* is countably infinite.

JOEL FRIEDMAN

(3) For each of the following languages, describe a DFA recognizing these languages; you may either draw a diagram using the notation in class and [Sip], or explicitly give Q, Σ, δ, q_{init}, F. Explain how your DFA works.
(a)

 $L = \{s \in \{a, b\}^* \mid |s| \mod 3 \text{ eqauls } 2\} = ss(sss)^*$ (|s| refers to the length of s). (b) $L = \{s \in \{a, b\}^* \mid s \text{ ends with } aba\} = \{a, b\}^* aba$

- (4) For each of the languages in Problem 3, describe a 1-tape Turming machine that decides these languages. (Including an explicit description of Σ, Γ, q_{acc}, q_{rej} and—either with a diagram or lists—Γ, Q, q_{init}.) Explain how your Turing machine works.
- (5) Describe an NFA (using a diagram or a list of Q, all δ values, F, q_{init}) for the langauge $(a^5, a^7)^*$ (over the alphabet $\Sigma = \{a\}$) that uses 10 states or fewer. Explain how your NFA works.
- (6) A language L over the alphabet $\Sigma = \{a\}$ has a^3 as its longest word. Use the Myhill-Nerode theorem to prove that any DFA recognizing L must have 5 states.
- (7) Consider a map from $\mathbb{N} \to \text{Power}(\mathbb{N})$ such that $1 \notin f(1)$. Explain why f(1) cannot equal

$$T = \{ n \in \mathbb{N} \mid n \notin f(n) \}.$$

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf

 $\mathbf{2}$