ADDITIONAL MIDTERM PRACTICE, CPSC 421/501, FALL 2019

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2019. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All problems on Homework 1-6 are practice midterm problems.

(1) State which sets are countable, and which are uncountable; justify your answer ${ }^{1}$.
(a) \mathbb{R}^{2}.
(b) $\mathbb{N} \times \mathbb{R}$.
(c) $\mathbb{N} \times \mathbb{Z}$.
(d) The set of all graphs.
(e) The set of all graphs whose vertex equals $\{1,2, \ldots, n\}$ for some integer n.
(f) The set of all Turing machines.
(g) The set of all Turing machines whose set of states equals $\{1, \ldots, q\}$ for some integer q, and whose tape alphabet equals $\{1, \ldots, \gamma\}$ for some integer γ.
(2) State whether the statements below are true or false, and justify your answer.
(a) If L_{1} and L_{2} are regular languages over the same alphabet, then $L_{1} \cup L_{2}$ is regular.
(b) If L_{1} and L_{2} are regular languages over the same alphabet, then $L_{1} \cap L_{2}$ is regular.
(c) If L_{1} and L_{2} are regular languages over the same alphabet, then $L_{1} \backslash L_{2}$ is regular.
(d) If L is a regular language over Σ, then the complement of L in Σ^{*}, i.e., $\Sigma^{*} \backslash L$ is regular.
(e) If L is a regular language, then L must be Turing decidable.
(f) If L is a Turing decidable language, then L must be regular.

[^0](3) For each of the following languages, describe a DFA recognizing these languages; you may either draw a diagram using the notation in class and [Sip], or explicitly give $Q, \Sigma, \delta, q_{\text {init }}, F$. Explain how your DFA works.
(a)
$$
L=\left\{s \in\{a, b\}^{*}| | s \mid \bmod 3 \text { eqauls } 2\right\}=s s(s s s)^{*}
$$
($|s|$ refers to the length of s).
(b)
$$
L=\left\{s \in\{a, b\}^{*} \mid s \text { ends with } a b a\right\}=\{a, b\}^{*} a b a
$$
(4) For each of the languages in Problem 3, describe a 1-tape Turming machine that decides these languages. (Including an explicit description of $\Sigma, \Gamma, q_{\mathrm{acc}}, q_{\mathrm{rej}}$ and-either with a diagram or lists- $\Gamma, Q, q_{\mathrm{init}}$.) Explain how your Turing machine works.
(5) Describe an NFA (using a diagram or a list of Q, all δ values, $F, q_{\text {init }}$) for the langauge $\left(a^{5}, a^{7}\right)^{*}$ (over the alphabet $\Sigma=\{a\}$) that uses 10 states or fewer. Explain how your NFA works.
(6) A language L over the alphabet $\Sigma=\{a\}$ has a^{3} as its longest word. Use the Myhill-Nerode theorem to prove that any DFA recognizing L must have 5 states.
(7) Consider a map from $\mathbb{N} \rightarrow \operatorname{Power}(\mathbb{N})$ such that $1 \notin f(1)$. Explain why $f(1)$ cannot equal
$$
T=\{n \in \mathbb{N} \mid n \notin f(n)\}
$$

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~ jf

[^0]: Research supported in part by an NSERC grant.
 ${ }^{1}$ In your justification, you may use the following facts:
 (a) the following are equivalent conditions that S be countable: (1) S is finite or there is a bijection between \mathbb{N} and S, (2) there is a surjection $\mathbb{N} \rightarrow S$, (3) there is an injection $S \rightarrow \mathbb{N}$.
 (b) If $S \rightarrow T$ is surjective and S is countable, then T is countable,
 (c) If $S \rightarrow T$ is injective and S is uncountable, then T is uncountable.
 (d) For any set S, there is no surjection from $S \rightarrow \operatorname{Power}(S)$.
 (e) The \mathbb{R} is uncountable.
 (f) For any alphabet A, A^{*} is countably infinite.

