THE UNIVERSITY OF BRITISH COLUMBIA CPSC 303: MIDTERM EXAMINATION – March 15, 2024

Last Name:	_ First Name:
Signature:	_ UBC Student #:
 Important notes about this examination You have 45 minutes to write this examination. You may use a pencil to write your solutions, although a very light pencil might be harder to read after scanning. No textbooks or electronic devices are permitted. We permit a "cheat-sheet" consisting of one page of handwritten or typed notes, on double-sided 8.5x11" paper. Answer all the questions in the exam. Good luck! 	
 Student Conduct during Examinations Each examination candidate must be prepared to produce, u the invigilator or examiner, his or her UBCcard for identificat Examination candidates are not permitted to ask questions of invigilators, except in cases of supposed errors or ambiguitie questions, illegible or missing material, or the like. No examination candidate shall be permitted to enter the exa after the expiration of one-half hour from the scheduled star during the first half hour of the examination. Should the exami five (45) minutes or less, no examination candidate shall be p the examination room once the examination has begun. Examination candidates must conduct themselves honestly a with established rules for a given examination commencing behaviour be observed by the examiner(s) or invigilator(s), p forgetfulness shall not be received. Examination candidates suspected of any of the following, on practices, may be immediately dismissed from the examination examiner/invigilator, and may be subject to disciplinary actio i. speaking or communicating with other examination can otherwise authorized; purposely exposing written papers to the view of other candidates or imaging devices; memory aid devices other than those authorized by the v. using or having visible at the place of writing any books, memory aid devices other than those authorized by the v. using or operating electronic devices including but not 1 calculators, computers, or similar devices other than those awriting). Examination candidates must not destroy or damage any exa must hand in all examination papers, and must not take any from the examination room without permission of the examination the traditional, paper-based method, examination candidate special rules for conduct as established and articulated by th Examination candidates must follow any additional examinatid directions communicated by the examiner(s) or invigilator(s	pon the request of ion. if the examiners or s in examination amination room ting time, or to leave mination run forty- permitted to enter and in accordance articulated by the g. Should dishonest leas of accident or r any other similar loon by the on: didates, unless examination tion candidates; papers or other examiner(s); and, imited to telephones, ose authorized by the orized by the ant at the place of amination material, examination material, examination material, examination material, examination material, examiner to any e examiner. tion rules or - 1

Page 2

0. Identification

Please make sure that the following is your 8-character Student ID:

Student ID:

Your answer to each problem should be written on its page; if needed, you can use the back side of the page as well.

1. Question 1. (10 points, 2 points per correct T/F Answer — No Penalty for Incorrect Responses)

Circle either T for true, or F for false, for each of the statements below.

Lagrange interpolation is numerically (i.e., in finite precision) more accurate than monomial interpolation when fitting data $(x_0, y_0), \ldots, (x_n, y_n)$ when the x_i are close together. See Homework 7, Problem 3

The ODE $y' = |y|^{1/2}$ subject to y(1) = 0 has a unique solution y = y(t) for near t = 1.For any a < b, $\gamma(t) = \begin{cases} -\frac{1}{4}(t-\alpha)^2 & t \leq \alpha \\ 0 & \alpha \leq t \leq b \end{cases}$ solves $\gamma' = |\gamma|^{1/2}.$ Т Hence if $\gamma(1)=0$, both $\gamma(1)=0$ near t=1 and $\gamma(1)=\begin{cases} -\gamma_{1}t^{2} & t\leq 0\\ \gamma_{1}t^{2} & t\leq 0 \end{cases}$ If $f: \mathbb{R} \to \mathbb{R}$ is differentiable, then the ODE y' = f(y) has at least one solution u = u(t) defined for all real tF solution y = y(t) defined for all real t. y'= fly) where fly) grows faster than linear will fail to have a solution, e.g. y'= y2+1. * If $A = SBS^{-1}$ for some square matrices A, B, S, then $A^{10} = SB^{10}S^{-1}$. T F $\mu_{es} = (SBS')(SBS') = SB^{2}S''$ $A^3 = A^2 A = (SB^2 S^{-1})(SBS^{-1}) = SB^3 S^{-1}$, etc. (Recall that 2^{-1074} is the smallest positive subnormal number.) The expression $2^{-1074} \times 2^{1074}$ evalutes to 1 in MATLAB. TF 21074 evaluates to Inf (inity); the largest normal number is 1.1. 1 × 2 1023; see clso Homework 5, Problem 5(e). And ylts = { -1/4 t2 tec has ylt) = 0 unless t= 0.

* The example I had in mind was $y'=y^2$ or $y'=y^3$, as on the homework. But for these equations y(t)=0 for all t works. One periedy is to make sure that $f(y) \ge$ some absolute constant. Or some other condition that forces y(t) to reach any finite value for large enough t.

2. Question 2 (5 points)

Let h > 0 be a fixed, real number. Find the formula for x_n that solves the recurrence equation

$$x_{n+1} = (1+3h)x_n + 3h$$
, for all integers n ,

subject to $x_0 = 1$. (Use the methods in class and on the homework.) Hence your formula for x_n should depend on h.

Homogeneous :
$$X_{nr_1} - (1r_3h)X_n = 0$$

Solution $X_n = (1r_3h)^n C$ (C constant)
Special solution $X_{nr_1} - (1r_3h)X_n = 3h$
try $X_n = a$ (constant) :
 $a - (1r_3h)a = 3h = 3 - 3ha = 3h$
 $\Rightarrow a = -1$

$$X_{n} = (1+3L)^{n}(-1)$$

$$X_{n} = Z(1+3h)^{n} - 1$$

3. QUESTION 3 (5 POINTS)

- (1) Let m be a positive integer. Consider the ODE y' = 3y + 3 subject to y(0) = 1. What approximation does Euler's method give to y(1) if you use step size h = 1/m? You may use your answer to Question 2 if you like.
- (2) What is the limit as $m \to \infty$ of the approximation to y(1) in part (1)?

[Hint 1: You can use the approximation $\log(1+\delta) = \delta + O(\delta^2)$ for $|\delta|$ near 0, or, equivalently, $1 + \delta = e^{\delta + O(\delta^2)}.$

[Hint 2: The exact solution to y' = 3y + 3 subject to y(0) = 1 is $y(t) = 2e^{3t} - 1$. So your answer to part (2) should reflect this.]

(1)
$$Y_{n+1} = Y_{n+1} + h f(Y_{n}) + f(Y_{1}) = 3y+3$$

So
 $Y_{n+1} = Y_{n+1} + h (3y_{n+3})$
 $= y_{n} (1+3h) + 3h$.
by Question 2: $Y_{n} = 2 (1+3h)^{n} - 1$.
If $h^{-1} \frac{1}{m}$, Y_{m} approximates $Y(mh) = Y(1)$
Hence Euler approx to $Y(1)$ is
 $\overline{Y_{m}} = 2 (1+3 \cdot \frac{1}{m})^{n} - 1$
(2) $1+3\frac{1}{m} = e^{3lm} + 6(3lm)^{2}$
 $(1+3\frac{1}{m})^{n} = e^{(3lm+0(1lm))} = e^{3+0(\frac{1}{m})}$

ρ

 $\overline{}$

So

$$\lim_{m \to \infty} 2(1+3\cdot\frac{1}{m})^m - 1$$

 $\lim_{m \to \infty} 2e^{3+0(l_m)} - 1$

$$= 2 e^{3} - 1$$

(which agrees with exact solution).

4. QUESTION 4 (5 POINTS)

Let p = p(x) and q = q(x) be polynomials of degree at most 2 satisfying

$$p(1) = \sqrt{2}, \ p(2) = \sqrt{3}, \ p(3) = \sqrt{5},$$

and

$$q(11) = \sqrt{2}, \ q(12) = \sqrt{3}, \ q(13) = \sqrt{5}.$$

Show that p(x) = q(x + 10) for all real x.

There are many solutions...
(1) Let
$$f(x) = p(x) - q(x+10)$$
, which is a polynomial of degree
at most 2. But $f(i) = \sqrt{2} - \sqrt{2} = 0$, and similarly $f(2) = 0$ and $f(3) = 0$.
Since f is of degree Z and has 3 zeros, f is the zero
polynomial. Hence $p(x) - q(x+10)$ is the zero polynomial, and so
 $p(x) = q(x+10)$. (See Homework 7, Problem (3)(e, f, g).)
(2) By Lagrange multipliers,

$$\rho(x) = \sqrt{2} \quad \frac{(\chi-2)(\chi-3)}{(1-2)(1-3)} + \sqrt{3} \quad \frac{(\chi-1)(\chi-3)}{(2-1)(2-3)} + \sqrt{5} \quad \frac{(\chi-1)(\chi-2)}{(3-1)(3-2)}$$

$$Q(x) = \sqrt{2} \frac{(x-12)(x-13)}{(11-12)(11-13)} + \sqrt{3} \frac{(x-11)(x-13)}{(12-13)} + \sqrt{5} \frac{(x-11)(x-12)}{(13-12)}$$

50

$$q(x+10) = \sqrt{2} \frac{(X+10-12)(X+11-12)}{(11-12)(11-13)} + \dots$$

$$= \sqrt{2} \frac{(x-2)(x-3)}{(11-12)(11-13)} + \sqrt{3} \text{ etr. } + \sqrt{5} \text{ etc.}$$

$$= 1^{st} \text{ term in } + \frac{sinilarly}{2^{st} \text{ term in } p}$$

$$= 2^{st} \text{ term in } p$$

(3) We have
$$p(x) = c_0 + c_1 \times + c_2 x^2$$
 where

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & q \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} J^2 \\ J^3 \\ J^5 \end{bmatrix}$$
If you now write $q(x) = \tilde{c}_0 + \tilde{c}_1 \times + \tilde{c}_2 \times^2$ where

$$\begin{bmatrix} 1 & 11 & 11^2 \\ 1 & 12 & 12^2 \\ 1 & 13 & 13^2 \end{bmatrix} \begin{bmatrix} \tilde{c}_0 \\ \tilde{c}_1 \\ \tilde{c}_2 \end{bmatrix} = \begin{bmatrix} J^2 \\ J^5 \\ J^5 \end{bmatrix}$$
and the calculation of $c_0, c_1, c_2, \tilde{c}_0, \tilde{c}_1, \tilde{c}_2$ and of
 p, q is pretty long...
One clever idea I saw from some students is to write
 $q(x+10) = \tilde{c}_0 + \tilde{c}_1 \times + \tilde{c}_2 \times^2$, and to note that

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & q \end{bmatrix} \begin{bmatrix} \tilde{c}_0 \\ \tilde{c}_1 \\ \tilde{c}_2 \end{bmatrix} = \begin{bmatrix} J^2 \\ J^3 \\ J^5 \end{bmatrix}$$
it follows that $\begin{bmatrix} c_0 \\ c_1 \\ c_1 \end{bmatrix}$ and $\begin{bmatrix} \tilde{c}_0 \\ \tilde{c}_1 \\ \tilde{c}_2 \end{bmatrix}$ must be equal
(we've seen that a system with a Vandarmonde coefficient
matrix has a unique solution).