CPSC 303, April 8, 2024
How do we approcch ODE's and PDE's

$$
\hat{T}_{\text {Hect }} \epsilon_{q} \text {... }
$$

GDE's:

$$
\vec{y}^{\prime}=f(t, \vec{y}):
$$

(1) Look locclly:

$$
\vec{y}=\vec{f}(t, \vec{y}), \quad \vec{y}\left(t_{0}\right)=\vec{y}_{0}
$$

t near t_{0}, Tayker series,.-

Euler's Method, Explicit Trapezoidal, ...
(2) Real Question! Do these methods work for t near $t_{1} \not \neq t_{0}$, Step size, h, in Euler's method, Trapezoidal,.. $h \rightarrow 0$ and apprexlurcte $y\left(t_{1}\right)$

Method: Choose a simple ODE, for which we do know solution

$$
\vec{y}^{\prime}(t)=A \vec{y}(t)
$$

we knew

$$
\stackrel{\rightharpoonup}{y}(t)=e^{A\left(t-t_{0}\right)} \frac{1}{y_{0}}
$$

if we impose $\vec{y}\left(t_{0}\right)=\vec{y}_{0}$.
Method 2: If $\vec{\varphi}^{\prime}=\vec{f}(t, \vec{y})$
\Rightarrow some invariant is preserved
(Energy), then you can run the method and test if the preserved invariant is numerically preserved.
Method 2^{\prime} If $\vec{y}^{\prime}=\vec{f}(t, \vec{y})$ con be "reversed in time"
then you can run the equations, reverse them, and you should get beck to your initial conditions Still, things car ge wrong...

Do the same thing for the heat equation:

$$
u_{t}=u_{x x} \underset{x=0}{ }
$$

We designed a method

$$
u_{t} \approx \frac{u(x, t+H)-u(x, t)}{H}
$$

$$
\left.\begin{array}{l}
u_{x x} \approx \frac{u(x+h)+u(x-h)-2 u(x)}{h^{2}} \\
u(x, t+H) \\
=u(x, t)(1-2 \rho)+ \\
(u(x+h, t)+u(x-h, t)) \rho \\
\rho=\frac{h^{2}}{H} \quad\left(o r \quad \frac{c h^{2}}{H}\right. \text { for } \\
u_{t}=c u_{x x}
\end{array}\right)
$$

Rem: If $\rho=1 / 6$, you get a scheme that is accurate Ho higher order

Method' Find a simple, exact solution, and sere how things world

Simple solution:

$$
\begin{aligned}
& u(x, t)=\sin (\pi x) e^{-\pi^{2} t} \\
& t=0 \quad u(x, 0)=\sum_{x=0}^{\sin (\pi x)}
\end{aligned}
$$

$t>0$ the solvion decoys by $e^{-\pi^{2} t}$

Clam! We carr test scheme

$$
\begin{aligned}
& \begin{array}{ccc}
i_{a} y_{0} & t+H \\
x-h & x & x+h
\end{array} \\
& u(x, t+H) \approx \\
& (1-2 \rho) u(x, t)+\rho\left(u(x-h, t)_{T}\right. \\
& u(x+h, t) \\
& =e^{-\pi^{2} t} . \\
& u(x, t) \\
& (1-2 \rho) \sin (\pi x)+ \\
& \sin (\pi x) \\
& \rho[\sin (\pi(x-h))+\sin (\pi(x+h))]
\end{aligned}
$$

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
& \frac{\sin (\alpha-\beta)=\sin \alpha \cos \beta-}{(\sin \alpha)(2 \cos \beta)} \\
& \sin (\pi x-\pi h) \\
& \sin (\pi x+\pi h)=(\sin (\pi x))(2 \cos (\pi h))
\end{aligned}
$$

So!

$$
\begin{aligned}
& (1-2 \rho) \sin (\pi x)+\rho(\sin (\pi(x-h))+ \\
& = \\
& (\sin (\pi x))(1+h))
\end{aligned}
$$

$\left[\right.$ Ancleg of $\left.y^{\prime}=A y \ldots\right]$
(Eulers methed):

$$
\begin{aligned}
& y(t+h) \approx y(t)+h f(t, y) \\
& h A y(t) \\
& y_{m_{t 1}}=y_{m}+h A y_{m} \\
&=(1+h A) y_{m}
\end{aligned}
$$

So

$$
y_{m}=(1+h A)^{m} y_{0}
$$

So

$$
u(x, t+t)=(1-2 \rho) u(x, t)+\rho\left[\begin{array}{l}
u(x+h, t)_{+} \\
u(x-h, t
\end{array}\right]
$$

In cuse $u(\alpha, 0)=\sin (\pi *)$

$$
\begin{array}{r}
u(x, t)=\sin (\pi x) e^{-\pi^{2} t} \\
u(x, t+h)=u(x, t)(1-2 \rho+2 \rho \cos (\pi h))
\end{array}
$$

$$
\begin{aligned}
& u(x, 0)=\sin (\pi x)< \\
& u(x, N) \approx(1-2 \rho+2 \rho \cos (\pi h)) u(x, 0)
\end{aligned}
$$

$u(x, 2 H) \approx$ in cur Lect eq approx, in exact arithmetic

$$
\begin{aligned}
& =(1-2 \rho+2 \rho \cos (\pi h))^{2} u(x, 0) \\
u(x, s H) & =(1-2 \rho+2 \rho \cos (\pi h))^{5} u(x, 0)
\end{aligned}
$$

Fix ρ, take $h \rightarrow 0, \rho=\frac{h^{2}}{H}, H=\frac{h^{2}}{\rho}$

$$
u\left(x, s \frac{h^{2}}{\rho}\right) \curvearrowright(1-2 \rho+2 \rho \cos (\pi h))^{s} u(x, 0)
$$

Scy t_{1},
assume take h smoll wirh $s \frac{h^{2}}{\rho}=t_{1}$
for seme $s \in \mathbb{N}, \quad h=\frac{1}{m}$
 $=\mathrm{hm}$

$$
h=1 / m
$$

$$
\begin{array}{r}
\lim _{h \rightarrow 0}(1-2 \rho+2 \rho \cos (\pi h))^{s} \\
\longrightarrow e^{-\pi^{2} t_{1}}
\end{array}
$$

(Anelog: Eulore methed $y^{\prime}=A_{y}$:

$$
\left[\begin{array}{l}
y_{n}=(1+A h)^{n} y_{0} \\
\lim _{h \rightarrow 0}(1+A h)^{n}=e^{A t_{1}} \\
n h=t_{1}-t_{0} \\
\operatorname{Trcp.} \quad y_{n}=\left(1+A h \pm \frac{h^{2} A}{2} ?\right)^{n} y_{0}
\end{array}\right]
$$

Sc

$$
\begin{aligned}
& 1-2 \rho+2 \rho \cos (\pi h) \\
& =1-2 \rho+2 \rho\left(1-\frac{(\pi h)^{2}}{2!}+O\left(h^{4}\right)\right)
\end{aligned}
$$

$$
\approx 1-\frac{(\pi h)^{2}}{2}+O\left(h^{4}\right)
$$

$$
\begin{aligned}
& \text { So } \\
& \left(1-\frac{(\pi h)^{2}}{2}+C\left(h^{4}\right)\right) \begin{array}{r}
\text { need } \\
\text { sonethuy } \\
\text { crodr } \\
1 / h^{2}
\end{array}
\end{aligned}
$$

So time sitep size
H must be roughly arder h^{2}

Sa justas Trapezcidul rule converges fuster then Euler's methel fou $y^{\prime}=A y$,
the calculation

$$
\begin{array}{r}
u\left(x, H_{s}\right)=(1-2 \rho+2 \rho \cos (\pi h))^{s} \\
u(x, 0)
\end{array}
$$

for $u(x, 0)=\sin (\pi x)$

Mich can test that for $\rho=1 / 6$) this convergence $\left(h \rightarrow 0, H \approx \rho h^{2}\right)$ is faster bu, a order in h^{2}

$$
\begin{aligned}
& 1-2 \rho+2 \rho \cos (\pi h) \\
& =1-2 \rho\left(\frac{(\pi h)^{2}}{2!}+\frac{(\pi h)^{4}}{4!}-\ldots\right)
\end{aligned}
$$

